which, in turn, give (for example):

X, B ky +ky —?m,
o*mym, —o*((m, + mz)kz +myks +myk;)
+ (kyky + kyky + kyks)

or, numerically,

N (1.2><106 —0)2) \
" [0* - 2.4x10%02 +0.8x10'?)

Now. if we use the modal summation formula (2.41) together with
the results obtained earlier, we can write

- (Xl ] _ (¢11)22 N _(312)22

2} 612—0) 0y —

or, numerically,

0.5 ,__ 05
0.4x10% — 02 2x10% -2

which is equal to (1.2x106—coz)/(O.leOlz—2.4x106m2+m4), as
above.

The above characteristics of both the modal and response models of
an undamped MDOF system form the basis of the corresponding data
for the more general, damped, cases.

The following sections will examine the effects on these models of
adding various types of damping, while a discussion of the presentation
MDOF frequency response data is given in Section 2.10.

2.5 MDOF SYSTEMS WITH PROPORTIONAL DAMPING

2.5.1 General Concept and Features of Proportional Damping
In approaching the more general case of damped systems, it is
convenient to consider first a special type of damping which has the
advantage of being particularly easy to include in our analysis. This
type of damping is usually referred to as 'proportional' damping (for
reasons which will be clear later) although this is a somewhat
restrictive title. The particular advantage of using a proportional
damping model in the analysis of structures is that the modes of such a
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structure are almost identical to those of the undamped version of the
model. Specifically, the mode shapes are identical and the natural
frequencies are very similar to those of the simpler undamped system.
In fact, 1t is possible to derive the modal properties of a proportionally-
damped system by analysing the undamped version in full and then
making a correction for the presence of the damping. While this
procedure is often used in the theoretical analysis of structures, it
should be noted that it is only valid in the case of this special type or
distribution of damping, which may not generally apply to the real
structures studied in modal tests.

If we return to the general equation of motion for an MDOF system,
equation (2.20), and add a viscous damping matrix [C], we obtain:

[M]s}+ [CHa)+ [K i} = {F) (2.45)

which is not so amenable to the type of solution followed in Section 2.4.
A general solution will be presented in the next section, but here we
shall examine the properties of this equation for the case where the
damping matrix is directly proportional to the stiffness matrix; i.e.
where

[c]=p[K] (2.46)

(NOTE — It should be noted that this is not the only type of
proportional damping — see below.)

In this case, it is clear that ifwe pre- and post-multiply the damping
matrix by the eigenvector matrix for the undamped system, [Y], in just
the same way as was done in equation (2.23) for the mass and stiffness
matrices, then we shall find:

(1" [e]be]=ple, =, ] (2.47)

where the diagonal elements, ¢, represent the modal damping of the
various modes of the system. The fact that this matrix is also diagonal
means that the undamped system mode shapes are also those of the
damped system, and this is a particular feature of this type of damping.
This statement can easily be demonstrated by taking the general
equation of motion above (2.45) and, for the case of no excitation, pre-
and post-multiplying the whole equation by the eigenvector matrix,
[Y]. We shall then find:

[mr }{p}+ [cr ]{P}+ [kr ]{p} = {0} 5 {p} = [LP]_1 {x} (2.48)
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from which the rth individual equation is:
m,p, +c,pp +k,p, =0 | (2.49)
which is clearly that of a single-degree-of-freedom system, or of a single

mode of the system. This mode has a complex natural frequency with an
imaginary (oscillatory) part of

r ow hor2 . =2_Rk | c -
o =0 y1-C; ; o =—F Crz—rzéﬁmr

m, 2 kr m,

and a real (decay) part of

ar =§r6r =’§

(using the notation introduced above for the SDOF analysis).
These characteristics carry over to the forced response analysis in

which a simple extension of the steps detailed between equations (2.35)
and (2.41) leads to the definition for the general receptance FRF as:

[a(m)]=k(+imC—m2MTl

or

o jp (@) = Z( (W”XWk’ (2.50)

— 02 m, )+ i{oc,)

which has a very similar form to that for the undamped system except
that now it becomes complex in the denominator as a result of the

inclusion of damping.

25.2 General Forms of Proportional Damping

It may be seen from the above that other distributions of damping will
bring about the same type of result and these are collectively included
in the classification 'proportional damping'. In particular, if the
damping matrix is proportional to the mass matrix, then exactly the
same type of result ensues and, indeed, the usual definition of
proportional damping is that the damping matrix [C] should be of the
form:
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[c]=p[K]+~v[p] 2.51)

In this case, the damped system will have eigenvalues and eigenvectors
as follows:

op =B 1-C2 ;& =BG, /2+7/2B,

and
[\Pdamped ] = [\Pundamped]

Distributions of damping of the type described above are sometimes,
though not always, found to be plausible from a practical standpoint:
the actual damping mechanisms are usually to be found 1n parallel with
stiffness elements (for internal material or hysteresis damping) or with
mass elements (for friction damping). There is a more general definition
of the condition required for the damped system to possess the same
mode shapes as its undamped counterpart, and that is:

(a1 )] = (e felfpr ) @52

although 1t is more difficult to make a direct physical interpretation of

its form.
Finally, it can be noted that an identical treatment can be made of

an MDOF system with proprtional hysteretic damping, producing the
same essential results. If the general system equations of motion are
expressed as:

[p)s}+ (K +i D]x} = {f} (2.53)
and the hysteretic damping matrix [D] is 'proportional’, typically;

[D] = plK]++[m] (2.54)
then we find that the mode shapes for the damped system are again

identical to those of the undamped system and that the eigenvalues
take the complex form:

2 _ —2( - L
A =a(+in,) ; @2=k/m, ; nr=B+y/m,? (2.55)

Also, the general FRF expression is written:
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ajp(@) = Z[ v var) (2.56)

- m,.J+LT'|,.k

2.6 MDOF SYSTEMS WITH STRUCTURAL (HYSTERETIC)
DAMPING — GENERAL CASE

2.6.1 Free Vibration Solution— Complex Modal Properties
The analysis in the previous section for proportionally-damped systems
gives some insight into the characteristics of this more general
description of practical structures. However, as was stated there, the
case of proportional damping is a particular one which, although often
justified in a theoretical analysis because it is realistic and also because
of a lack of any more accurate model, does not apply to all cases. In our
studies here, it is very important that we consider the most general case
if we are to be able to interpret and analyse correctly the data we
observe on real structures. These, after all, know nothing of our
predilection for assuming proportionality in the distribution of damping.
Thus, in the next two sections we consider the properties of systems
with general damping elements, first of the hysteretic type, then
viscous.

We start by writing the general equation of motion for an MDOF
system with hysteretic damping and harmonic excitation (as it is this
that we are working towards):

[Mfx}+ [Kx}+i [ D]x} = {Fle™* (2.57)

Now, consider first the case where there is no excitation and assume a
solution of the form:

{} = (X} (2.58)

where A is allowed to be complex. Substituted into (2.57), this trial
solution leads to a complex eigenproblem whose solution 1s in the form
of two matrices (as for the earlier undamped case), containing the
eigenvalues and eigenvectors. In this case, however, these matrices are
both complex, meaning that each natural frequency and each mode
shape is described in terms of complex quantities. We choose to write
the rth eigenvalue as

22 = oZ(1+in,) (2.59)
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where @, isthe natural frequency and 1, is the damping loss factor for
that mode. It is important to note that the natural frequency @, is not
(necessarily) equal to the natural frequency of the undamped system,
@,, as was the case for proportional hysteretic damping, although the
two values will generally be very close in practice.

The complex mode shapes are at first more difficult to interpret but
in fact what we find is that the amplitude of each DOF can be
considered as having both a magnitude and a phase angle. This is only
very slightly different from the undamped case as there we effectively
have a magnitude at each point plus a phase angle which is either 0° or
180°, both of which can be completely described using real numbers.
What the inclusion of general damping effects does is to generalise this
particular feature of the mode shape data to a situation in which the
phase may take any value, not only 0° and 180°. Further discussion of
this feature 1s given in Section 2.9.

This eigensolution can be seen to possess the same type of
orthogonality properties as those demonstrated earlier for the
undamped system and may be defined by the equations:

[ [m]le]=[m,] ; [¥]'[K+iD][¥]=[k,] (2.60)

Again, the modal mass and stiffness parameters (now complex) depend
upon the normalisation of the mode shape vectors for their magnitudes
but always obey the relationship:

k
I o (2.61)

mpy

and here again we may define a set of mass-normalised eigenvectors as:

o}, = (m, )2}, (2.62)
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Numerical examples with structural damping
Some further numerical examples are included to illustrate the
characteristics of more general damped systems, based on thg
following 3DOF model:

|-9x2 k;

m, y ks

m, my
S

K Ky

Model 1

m; =0.5kg mg =1.6kg
mg =1.0kg  ky =ky =ky =ky =ks =k =1.0x10% N/m

| Case 1(a) — Undamped

950 0 0 0.464 —0.218 —1.318
[a?]: 0 3352 0 . [o]=|0.536 —0.782 0.318
0 0 6698 0.635 0.493 0.142

Case 1(b) — Proportional structural damping (d; =0.05k;; j =1,6)

950(1 + 0.05%) 0 0
A2 |= 0 3352(1+0.05¢) 0
0 0 6698(1 +0.05:) |

0.464(0°) 0.218(180°) 1.318(180°)
[©]=]0.536(0°) 0.782(180°) 0.318(0°)
0.635(0°) 0.493(0°)  0.142(0°)

Case 1(c) — Non-proportional structural damping
(dy =0.3k;,dy_g =0, 1i.e. a single damper between my and ground) i

957(1 +0.067:) 0 0
[}é’; = 0 3354(1 +0.042i) 0
0 0 6690(1 +0.0787)

0.463(-5.5°) 0.217(173°) 1.321(181°)
[©]=]0.537(0°)  0.784(181°) 0.316(-6.7°)
0.636(1.0°)  0.492(-1.3°) 0.142(-3.1°)
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NOTES:

(i) Eachmode has a different damping factor.

(i) All eigenvector arguments within 10° of 0° or 180° (i.e. the
modes are almost 'real').

Model 2

my =1.0kg mg =1.05 kg
my =095kg  ky =ky =kg =ky =ks = kg =1.0x10% N/m

‘Case 2(a) — Undamped

999 0 0 0.577 -0.602 0.552
a?]: 0 3892 0 . [o]=|0567 -0.215 -0.827
0 0 4124 0.587 0.752  0.207

INOTE: this system has two close natural frequencies.

(Case 2(b) — Proportional structural damping (d; = 0.05k%;)

999(1 + 0.05%) 0 0
[x'ﬁ ]: 0 3892(1 +0.05:) 0
0 0 4124(1 +0.05:)

0.577(0°) 0.602(180°) 0.552(0°)
[©]=|0.567(0°) 0.215(180°) 0.827(180°)
0.587(0°) 0.752(0°)  0.207(0°

Case 2(c) — Non-proportional structural damping
(dl = 0.3k1, d2——6 = 0)

1006(1 +0.10:) 0 0
[xzr - 0 3942(1 +0.031:) 0
0 0 4067(1 +0.019:)

0.578(—4°) 0.851(162°) 0.685(40°) I
[©]=| 0.569(2°) 0.570(101°) 1.019(176°)
0.588(2°) 0.848(12°) - 0.560(-50°)
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26.2 Forced Response Solution — FRF Characteristics

We turn next to the analysis of forced vibration for the particular case of
harmonic excitation and response, for which the governing equation of
motion 1s:

([K]+ i[D]- 0® [M])[X}ei“" = {Fle™! (2.63)

As before, a direct solution to this problem may be obtained by using the
equations of motion to give:

- (&) +i[D]- o (1] {F) = [ }F) -

but again this is very inefficient for numerical application and we shall
make use of the same procedure as before by multiplying both sides of
the equation by the eigenvectors. Starting with (2.64), and following the
same procedure as between equations (2.38)and (2.40), we can write:

fu@)]= o]0z - o2 ) o] (2.65)

and from this full matrix equation we can extract any one FRF element,
such as o ik (w), and express 1t explicitly in a series form:

ajp () = Z S (¢J,X¢k, S (2.66)

ol Wy — 02 +in, 02

which may also be rewritten in various alternative ways, such as:

o ji (@) = Z ‘(erXWkr

rlm( — 02 +iM, © 2J

or

In these expressions, the numerator (as well as the denominator) is now
complex as a result of the complexity of the eigenvectors. It is in this
respect that the general damping case differs from that for proportional
damping.



