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*21.5 Gyroscopic Motion

In this section we will develop the equations defining the motion of a body
(top) which is symmetrical with respect to an axis and rotating about a
fixed point. These equations also apply to the motion of a particularly
interesting device, the gyroscope.

The body’s motion will be analyzed using Euler angles ¢, 6, ¢ (phi,
theta, psi). To illustrate how they define the position of a body, consider
the top shown in Fig. 21-15a. To define its final position, Fig. 21-15d, a
second set of x, y, z axes is fixed in the top. Starting with the X, Y, Z and
X, y, z axes in coincidence, Fig. 21-15a, the final position of the top can be
determined using the following three steps:

1. Rotate the top about the Z (or z) axis through an angle
¢ (0 = ¢ < 27), Fig. 21-15b.

2. Rotate the top about the x axis through an angle 6 (0 = 6 = 7),
Fig. 21-15c.

3. Rotate the top about the z axis through an angle ¢ (0 = ¢ < 277)
to obtain the final position, Fig. 20-154.

The sequence of these three angles, ¢, 0, then ¢, must be maintained,
since finite rotations are not vectors (see Fig. 20-1). Although this is the
case, the differential rotations d¢, d@, and dis are vectors, and thus the
angular velocity w of the top can be expressed in terms of the time
derivatives of the Euler angles. The angular-velocity components ¢, 6,
and ¢ are known as the precession, nutation, and spin, respectively.

* Nutation 6
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Fig. 21-15



Their positive directions are shown in Fig. 21-16. It is seen that these
vectors are not all perpendicular to one another; however, w of the top
can still be expressed in terms of these three components.

Since the body (top) is symmetric with respect to the z or spin axis,
there is no need to attach the x, y, z axes to the top since the inertial
properties of the top will remain constant with respect to this frame
during the motion. Therefore Q) = @, + w,, Fig. 21-16. Hence, the
angular velocity of the body is

® =i+ ojt+ ok
= 6i + (¢sin0)j + (Hcosb + )k (21-27)
And the angular velocity of the axes is
Q=0Q,i+ Q,j+ Qk
= 6i + (¢ sin0)j + (¢ cos )k (21-28)

Have the x, y, z axes represent principal axes of inertia for the top, and so
the moments of inertia will be represented as I, = I,, = I and I, = I,.
Since ) # o, Egs.21-26 are used to establish the rotational equations of
motion. Substituting into these equations the respective angular-velocity
components defined by Eqgs. 21-27 and 21-28, their corresponding time
derivatives, and the moment of inertia components, yields

M, = I(G — ¢?sin 6 cos 0) + Izéb sin 9((1) cos 0 + ¢)
M, = I($sin @ + 246 cos 6) — Izé(db cos 6 + i) (21-29)

SM, = L( + ¢ cosf — ¢fsin 6)

Each moment summation applies only at the fixed point O or the center
of mass G of the body. Since the equations represent a coupled set of
nonlinear second-order differential equations, in general a closed-form
solution may not be obtained. Instead, the Euler angles ¢, 6, and ¢y may
be obtained graphically as functions of time using numerical analysis and
computer techniques.

A special case, however, does exist for which simplification of Egs. 21-29
is possible. Commonly referred to as steady precession, it occurs when
the nutation angle 6, precession ¢, and spin ¢ all remain constant.
Equations 21-29 then reduce to the form

SM, = —1¢*sin 0 cos 6 + L sin 6( cos 6 + ¢) | (21-30)

SM, =0
SM, =0
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Equation 21-30 can be further simplified by noting that, from
Eq.21-27, w, = ¢ cos 6 + i, so that

SM, = —I¢*sin 6 cos g + IZd) (sin O)w,

or

SM, = ¢ sin6(Lw, — I cos b) (21-31)

It is interesting to note what effects the spin ¢ has on the moment
about the x axis. To show this, consider the spinning rotor in Fig. 21-17.
Here 6 = 90°, in which case Eq. 21-30 reduces to the form

SM, = Loy

or

SM, = 1O, (21-32)

X, x

Fig. 21-17

From the figure it can be seen that (), and e, act along their
respective positive axes and therefore are mutually perpendicular.
Instinctively, one would expect the rotor to fall down under the influence
of gravity! However, this is not the case at all, provided the product
I.Q w, is correctly chosen to counterbalance the moment XM, = Wrg
of the rotor’s weight about O. This unusual phenomenon of rigid-body
motion is often referred to as the gyroscopic effect.
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Perhaps a more intriguing demonstration of the gyroscopic effect
comes from studying the action of a gyroscope, frequently referred to as
a gyro. A gyro is a rotor which spins at a very high rate about its axis of
symmetry. This rate of spin is considerably greater than its precessional
rate of rotation about the vertical axis. Hence, for all practical purposes,
the angular momentum of the gyro can be assumed directed along its
axis of spin. Thus, for the gyro rotor shown in Fig. 21-18, w, >> (), and ‘
the magnitude of the angular momentum about point O, as determined ¢ M, ¥
from Eqgs. 21-11, reduces to the form Hp = Lw,. Since both the = \,/r

»Z

D
magnitude and direction of Hy are constant as observed from x, y, z, o Hﬂ’; _G_> — Y
direct application of Eq. 21-22 yields ) 7 Hp
X
M, = O, X Ho (21-33) Fig. 21-18

Using the right-hand rule applied to the cross product, it can be seen
that (), always swings Hy, (or @, ) toward the sense of 2M,. In effect,
the change in direction of the gyro’s angular momentum, dHy, is
equivalent to the angular impulse caused by the gyro’s weight about O,
ie,dHp = XM, dt, Eq.21-20. Also, since Hy = l,w,and ZM,, Q,, and
H, are mutually perpendicular, Eq. 21-33 reduces to Eq. 21-32.

When a gyro is mounted in gimbal rings, Fig. 21-19, it becomes free of
external moments applied to its base. Thus, in theory, its angular
momentum H will never precess but, instead, maintain its same fixed
orientation along the axis of spin when the base is rotated. This type of
gyroscope is called a free gyro and is useful as a gyrocompass when the
spin axis of the gyro is directed north. In reality, the gimbal mechanism is
never completely free of friction, so such a device is useful only for the
local navigation of ships and aircraft. The gyroscopic effect is also useful
as a means of stabilizing both the rolling motion of ships at sea and the
trajectories of missiles and projectiles. Furthermore, this effect is of
significant importance in the design of shafts and bearings for rotors
which are subjected to forced precessions.

Bearings
Gimbali \ >

The spinning of the gyro within the frame
of this toy gyroscope produces angular
momentum Hp, which is changing
direction as the frame precesses w,
about the vertical axis. The gyroscope
will not fall down since the moment of its
weight W about the support is balanced
Fig. 21-19 by the change in the direction of Hy.
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EXAMPLE |21.7

w, = 100 rad /s The top shown in Fig. 21-20a has a mass of 0.5 kg and is precessing about
the vertical axis at a constant angle of § = 60°. If it spins with an angular
velocity wg = 100 rad/s, determine the precession w,. Assume that
the axial and transverse moments of inertia of the top are
0.45(107%) kg - m? and 1.20(107%) kg - m?, respectively, measured with
respect to the fixed point O.

z
V4
y
G X 60°
Fig. 21-20 490
N o y
005m J Oy
(0
X
X
(b)
SOLUTION

Equation 21-30 will be used for the solution since the motion is steady
precession. As shown on the free-body diagram, Fig. 21-20b, the
coordinate axes are established in the usual manner, that is, with the
positive z axis in the direction of spin, the positive Z axis in the direction
of precession, and the positive x axis in the direction of the moment
2 M, (refer to Fig. 21-16). Thus,

SM, = —I¢?sin 6 cos § + L sin 6(¢p cos 6 + 1)
4.905 N(0.05 m) sin 60° = —[1.20(1073) kg - m? $?] sin 60° cos 60°
+ [0.45(107%) kg - m*]¢b sin 60°(¢p cos 60° + 100 rad/s)

or
d* — 120.0¢ + 654.0 = 0 1)
Solving this quadratic equation for the precession gives
¢ = 114 rad/s (high precession) Ans.
and
¢ = 5.72rad/s (low precession) Ans.

NOTE: In reality, low precession of the top would generally be
observed, since high precession would require a larger kinetic energy.
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EXAMPLE |21.8

The 1-kg disk shown in Fig. 21-21a spins about its axis with a constant
angular velocity wp = 70 rad/s. The block at B has a mass of 2 kg, and
by adjusting its position s one can change the precession of the disk
about its supporting pivot at O while the shaft remains horizontal.
Determine the position s that will enable the disk to have a constant
precession w, = 0.5 rad/s about the pivot. Neglect the weight of the
shaft.

981N (®)

SOLUTION

The free-body diagram of the assembly is shown in Fig. 21-21b. The
origin for both the x, y, z and X, Y, Z coordinate systems is located at
the fixed point O. In the conventional sense, the Z axis is chosen along
the axis of precession, and the z axis is along the axis of spin, so that
6 = 90°. Since the precession is steady, Eq. 21-32 can be used for the
solution.

M, = IO,

Substituting the required data gives
(98.1N) (0.2 m) — (19.62 N)s = [5(1 kg)(0.05 m)2]0.5 rad/s(—70 rad/s)
s = 0.102m = 102 mm Ans.




620

CHAPTER 21

THREE-DIMENSIONAL KINETICS OF A RIGID BoDY

21.6 Torque-Free Motion

When the only external force acting on a body is caused by gravity, the
general motion of the body is referred to as torque-free motion. This type
of motion is characteristic of planets, artificial satellites, and projectiles —
provided air friction is neglected.

In order to describe the characteristics of this motion, the distribution
of the body’s mass will be assumed axisymmetric. The satellite shown in
Fig. 21-22 is an example of such a body, where the z axis represents an
axis of symmetry. The origin of the x, y, z coordinates is located at the
mass center G, such that I, = I, and I, = I,, = I. Since gravity is the
only external force present, the summation of moments about the mass
center is zero. From Eq. 21-21, this requires the angular momentum of
the body to be constant, i.e.,

H; = constant

At the instant considered, it will be assumed that the inertial frame of
reference is oriented so that the positive Z axis is directed along Hg; and
the y axis lies in the plane formed by the z and Z axes, Fig. 21-22. The
Euler angle formed between Z and z is 6, and therefore, with this choice
of axes the angular momentum can be expressed as

H; = Hgsin6j + Hgcos Ok
Furthermore, using Eqgs. 21-11, we have
Hg = lo,i + lo)j + Lok

Equating the respective i, j, and k components of the above two
equations yields

Fig. 21-22
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He sin 0 H cos 0
0, =0 @, =0T, = O (21-34)
i L.
or
Hssin6, Hgcos 6
w = i+ k (21-35)
i L.

In a similar manner, equating the respective i, j, k components of
Eq.21-27 to those of Eq. 21-34, we obtain

=0
[ H_HGSiHO
¢ sin =7
. . Hg cos 0
d)COSO-ﬁ-lIl:GT

Z

Solving, we get

0 = constant

. HG

¢=7 (21-36)
A IZH o

Y= 1L G COS

Thus, for torque-free motion of an axisymmetrical body, the angle 6
formed between the angular-momentum vector and the spin of the body
remains constant. Furthermore, the angular momentum Hg, precession
$, and spin  for the body remain constant at all times during the
motion.

Eliminating H; from the second and third of Egs. 21-36 yields the
following relation between the spin and precession:

. I-1.
Y= 7 ¢ cos 6 (21-37)

%
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Axis of
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Fig. 21-23
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These two components of angular motion can be studied by using the
body and space cone models introduced in Sec. 20.1. The space cone
defining the precession is fixed from rotating, since the precession has a
fixed direction, while the outer surface of the body cone rolls on the
space cone’s outer surface. Try to imagine this motion in Fig. 21-23a.
The interior angle of each cone is chosen such that the resultant
angular velocity of the body is directed along the line of contact of the
two cones. This line of contact represents the instantaneous axis of
rotation for the body cone, and hence the angular velocity of both the
body cone and the body must be directed along this line. Since the spin
is a function of the moments of inertia / and 7, of the body, Eq. 21-36,
the cone model in Fig. 21-23a is satisfactory for describing the motion,
provided I > I,. Torque-free motion which meets these requirements
is called regular precession. If I < I, the spin is negative and the
precession positive. This motion is represented by the satellite motion
shown in Fig. 21-23b (I < I,). The cone model can again be used to
represent the motion; however, to preserve the correct vector addition
of spin and precession to obtain the angular velocity w, the inside
surface of the body cone must roll on the outside surface of the (fixed)
space cone. This motion is referred to as retrograde precession.

Satellites are often given a spin before they are launched. If their angular momentum
is not collinear with the axis of spin, they will exhibit precession. In the photo on the
left, regular precession will occur since / > I, and in the photo on the right, retrograde
precession will occur since [ < I.
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EXAMPLE |21.9

The motion of a football is observed using a slow-motion projector.
From the film, the spin of the football is seen to be directed 30°
from the horizontal, as shown in Fig. 21-24a. Also, the football is
precessing about the vertical axis at a rate ¢ = 3rad/s. If the
ratio of the axial to transverse moments of inertia of the football
is %, measured with respect to the center of mass, determine the
magnitude of the football’s spin and its angular velocity. Neglect the
effect of air resistance.

$¢> =3rad/s
L
4
)l)% s
L
30°

(a) (b)
Fig. 21-24

SOLUTION

Since the weight of the football is the only force acting, the motion is
torque-free. In the conventional sense, if the z axis is established along
the axis of spin and the Z axis along the precession axis, as shown in
Fig. 21-24b, then the angle 6 = 60°. Applying Eq. 21-37, the spin is

A -3
=——"dcosh = T (3) cos 60°
I, 1
= 3rad/s Ans.
Using Egs. 21-34, where Hg; = ¢I (Eq.21-36), we have
w, =0
Hgsin® 31 sin 60°
wy = 0 = T = 2,60 rads
H, 0 31 60°
w, = GEOSY _ clos = 4.50 rad/s
15 ol
Thus,
0 = V() + (@) + (o)
= V(0)? + 260) (4.50)>

= 5.20 rad/s Ans.
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“Teropiems

21-61. Show that the angular velocity of a body, in
terms of Euler angles ¢, 6, and ¢, can be expressed as
1) =(<i§sin(isin¢+écos¢)i + (<}bsiné)cos¢—ésin¢)j +
(¢ cos 6 + {p)k, where i, j, and k are directed along the x, y,
z axes as shown in Fig. 21-15d.

21-62. A thin rod is initially coincident with the Z axis
when it is given three rotations defined by the Euler angles
¢ = 30° 6 = 45° and ¢y = 60°. If these rotations are given
in the order stated, determine the coordinate direction
angles «a, B, y of the axis of the rod with respect to the X, Y,
and Z axes. Are these directions the same for any order of
the rotations? Why?

21-63. The 30-Ib wheel rolls without slipping. If it has a
radius of gyration k45 = 1.2 ft about its axle AB, and the
vertical drive shaft is turning at 8rad/s, determine the
normal reaction the wheel exerts on the ground at C.
Neglect the mass of the axle.

*21-64. The 30-1b wheel rolls without slipping. If it has a
radius of gyration k,z = 1.2 ft about its axle AB,
determine its angular velocity w so that the normal reaction
at C becomes 60 Ib. Neglect the mass of the axle.

T
&:»
B

Z/\&;y\‘/3ft

Probs. 21-63/64

021-65. The motor weighs 50 1b and has a radius of
gyration of 0.2 ft about the z axis. The shaft of the motor is
supported by bearings at A and B, and spins at a constant
rate of w; = {100k} rad/s, while the frame has an angular
velocity of @, = {2j} rad/s. Determine the moment which
the bearing forces at A and B exert on the shaft due to this
motion.

Prob. 21-65

21-66. The car travels at a constant speed of
vc = 100 km/h around the horizontal curve having a radius
of 80 m. If each wheel has a mass of 16 kg, a radius of
gyration ks = 300 mm about its spinning axis, and a radius
of 400 mm, determine the difference between the normal
forces of the rear wheels, caused by the gyroscopic effect.
The distance between the wheels is 1.30 m.

Prob. 21-66



21-67. The top has a mass of 90 g, a center of mass at G,
and a radius of gyration k = 18 mm about its axis of
symmetry. About any transverse axis acting through point O
the radius of gyration is k£, = 35 mm. If the top is connected
to a ball-and-socket joint at O and the precession is
w, = 0.5 rad/s, determine the spin e;.

CT: w,, '\4
% “
@)
60 mm
Prob. 21-67

*21-68. The top has a weight of 3 1b and can be considered
as a solid cone. If it is observed to precess about the vertical
axis at a constant rate of 5 rad/s, determine its spin.

ﬁ s inyCZ\' b

6 in. [~ 3(°

N
Srad/s

Prob. 21-68

*21-69. The empty aluminum beer keg has a mass of m,
center of mass at G, and radii of gyration about the x and
y axes of k, = k, = %r, and about the z axis of k, = %r,
respectively. If the keg rolls without slipping with a constant
angular velocity, determine its largest value without having
the rim A leave the floor.

Z y

Prob. 21-69
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21-70. The 10-kg cone spins at a constant rate of
o, = 150 rad/s. Determine the constant rate w, at which it
precesses if ¢ = 90°.

21-71. The 10-kg cone is spinning at a constant rate of
o, = 150 rad/s. Determine the constant rate w,, at which it
precesses if ¢ = 30°.

300 mm

8

100 mm'—"

Probs. 21-70/71

*21-72. 'The 1-1b top has a center of gravity at point G. If it
spins about its axis of symmetry and precesses about the
vertical axis at constant rates of w; = 60rad/s and
w, = 10rad/s, respectively, determine the steady state
angle 6. The radius of gyration of the top about the z axis is
k. = 1in.,and about the x and y axesitis k, = k, = 4 in.

%

wg = 60 rad/s

‘\0
w, = 10rad/s ap)

Prob. 21-72
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*21-73. At the moment of take off, the landing gear of an
airplane is retracted with a constant angular velocity of
o, = 2rad/s, while the wheel continues to spin. If the plane
takes off with a speed of v = 320 km/h, determine the
torque at A due to the gyroscopic effect. The wheel has a
mass of 50 kg, and the radius of gyration about its spinning
axis is k = 300 mm.

Prob. 21-73

21-74. The projectile shown is subjected to torque-free
motion. The transverse and axial moments of inertia are /
and I, respectively. If 6 represents the angle between the
precessional axis Z and the axis of symmetry z, and 8
is the angle between the angular velocity @ and the z
axis, show that B and 6 are related by the equation
tan§ = (I/1,) tan B.

Prob. 21-74
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21-75. The space capsule has a mass of 3.2 Mg, and about
axes passing through the mass center G the axial and
transverse radii of gyration are k, = 0.90 m and k, = 1.85 m,
respectively. If it spins at w; = 0.8 rev/s, determine its
angular momentum. Precession occurs about the Z axis.

Wy _—

Prob. 21-75

*21-76. 'The radius of gyration about an axis passing through
the axis of symmetry of the 2.5-Mg satellite is k, = 2.3 m,
and about any transverse axis passing through the center of
mass G, k, = 3.4 m. If the satellite has a steady-state
precession of two revolutions per hour about the Z axis,
determine the rate of spin about the z axis.

Prob. 21-76

021-77. The 4-kg disk is thrown with a spin w, = 6 rad/s.
If the angle 6 is measured as 160°, determine the precession
about the Z axis. 7z

w, = 6rad/s

\
\

b4
Prob. 21-77



21-78. The projectile precesses about the Z axis at a
constant rate of ¢ = 15 rad/s when it leaves the barrel of a
gun. Determine its spin ¢ and the magnitude of its angular
momentum Hg. The projectile has a mass of 1.5 kg and radii
of gyration about its axis of symmetry (z axis) and about
its transverse axes (x and y axes) of k, = 65mm and
ky = k, = 125 mm, respectively.

‘@\o
AN
&_) $=15 rad/s

Prob. 21-78

21-79. The satellite has a mass of 100 kg and radii of
gyration about its axis of symmetry (z axis) and its transverse
axes (x or y axis) of k, = 300 mm and k, = k, = 900 mm,
respectively. If the satellite spins about the z axis at a constant
rate of ¢ = 200rad/s, and precesses about the Z axis,
determine the precession ¢ and the magnitude of its angular
momentum Hg.

z Z
B

i = 200 rad/s

T AT T
s
0 Lo 7
NAZ2y
i

22
AL 7
o s

G

Prob. 21-79
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*21-80. The football has a mass of 450 g and radii of
gyration about its axis of symmetry (z axis) and its transverse
axes (x or y axis) of k, = 30 mm and k, = k, = 50 mm,
respectively. If the football has an angular momentum of
Hg = 0.02 kg - m%/s, determine its precession ¢ and spin .
Also, find the angle B that the angular velocity vector
makes with the z axis.

Hg=0.02kg - m?/s
z

Prob. 21-80

¢21-81. The space capsule has a mass of 2 Mg, center of
mass at G, and radii of gyration about its axis of
symmetry (z axis) and its transverse axes (x or y axis)
of k, = 275m and k, = k, = 5.5 m, respectively. If the
capsule has the angular velocity shown, determine its
precession ¢ and spin . Indicate whether the precession
is regular or retrograde. Also, draw the space cone and
body cone for the motion.

Prob. 21-81
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| CHAPTER REVIEW

Moments and Products of Inertia

A body has six components of inertia for

any specified x,y, z axes. Three of these I, = /rx dm = /(y2 + %) dm llgy = I = /xy dm
are moments of inertia about each of the m m mn

axes, Ixx,olyy, I..,and three are products I, = /,ﬁ dn = /(x2 + Z2) A IL,=1I,= /yz dm
of inertia, each defined from two m m m
orthogonal planes, Iy, I, I,.. If either I, = /r% e /(x2 + yz) . I,=1, = /xz i
one or both of these planes are planes of m m m

symmetry, then the product of inertia
with respect to these planes will be zero.

The moments and products of inertia can
be determined by direct integration or by
using tabulated values. If these quantities
are to be determined with respect to axes
or planes that do not pass through the
mass center, then parallel-axis and
parallel-plane theorems must be used.

Provided the six components of inertia

are known, then the moment of inertia _ 2 2 2

; . . log = Ly + Lyuy + Lz — 2Luw, — 21, uu, — 21 u,
about any axis can be determined using

the inertia transformation equation.

Principal Moments of Inertia
At any point on or off the body, the x, y, z

axes can be oriented so that the products

. . . I, 0 O
of inertia will be zero. The resulting 0 I 0
moments of inertia are called the Y
principal moments of inertia, one of 0 0 I
which will be a maximum and the other a
minimum.
Principle of Impulse and Momentum %) &
The angular momentum for a body can be m(vg) + E/ Fdit = m(vg), (Hop)1 + 2/ My di = (Hp),
determined about bit int A. h h

etermined about any arbitrary poin where
Once the linear and angular momentum Hp = / po X (0 X po)dm
m H, =l 0, - Ixywy - Ixzwz

for the body have been formulated, then
the principle of impulse and momentum
can be used to solve problems that H; = / pc X (o X pg)dm H, =L, ~ Lo, + 0,
involve force, velocity, and time. m

Fixed Point O
H,=-l, o+ I,0, - 1,0,

Center of Mass
H, = pg/a X mvg + Hg

Arbitrary Point

Principle of Work and Energy

The kinetic energy for a body is usually T =1Le? + 1102 + 11,02 T =3imvy + o2 + 11,07 + L Lo?

. ; . . 25yWy =2 24yWy
determln,ed relative to a fixed point or Fixed Point Center of Mass
the body’s mass center.
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These formulations can be used with the
principle of work and energy to solve
problems that involve force, velocity, and
displacement.

Tl + ZUl*Z = T2

Equations of Motion

There are three scalar equations of
translational motion for a rigid body that
moves in three dimensions.

The three scalar equations of rotational
motion depend upon the motion of the x,
v, z reference. Most often, these axes are
oriented so that they are principal axes
of inertia. If the axes are fixed in and
move with the body so that () = w, then
the equations are referred to as the Euler
equations of motion.

A free-body diagram should always
accompany the application of the
equations of motion.

EF)c = m(aG)x
ZF, = m(ag),
EFZ = m(aG)z

M, = Lo, — (I, — I)o,w,
M, = Lo, — (I, — I,)o.0,
M, = Lo, — (I, — )0,

Q=w
M, = Lo, — [,Qw0, + LOo,
M, = L, — LQw, + [Q.0,
M, = Lo, — LQo, + [,Q0,

Q+#ow

Gyroscopic Motion

The angular motion of a gyroscope is
best described using the three Euler
angles ¢, 6, and . The angular velocity
components are called the precession d)
the nutation 6, and the spin .

If6 = 0and ¢) and 1/; are constant, then the
motion is referred to as steady precession.

It is the spin of a gyro rotor that is
responsible for holding a rotor from
falling downward, and instead causing it
to precess about a vertical axis. This
phenomenon is called the gyroscopic effect.

SM, = —I¢?sin 6 cos 6 + Izd) sin 0((1) cos 6 + 1[/)

SM, =0,3M, =0

Torque-Free Motion

A body that is only subjected to a
gravitational force will have no moments
on it about its mass center, and so the
motion is described as torque-free
motion. The angular momentum for the
body about its mass center will remain
constant. This causes the body to have
both a spin and a precession. The motion
depends upon the magnitude of the
moment of inertia of a symmetric body
about the spin axis, /., versus that about a
perpendicular axis, /.
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