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*21.5 Gyroscopic Motion

In this section we will develop the equations defining the motion of a body
(top) which is symmetrical with respect to an axis and rotating about a
fixed point. These equations also apply to the motion of a particularly
interesting device, the gyroscope.

The body’s motion will be analyzed using Euler angles (phi,
theta, psi). To illustrate how they define the position of a body, consider
the top shown in Fig. 21–15a. To define its final position, Fig. 21–15d, a
second set of x, y, z axes is fixed in the top. Starting with the X, Y, Z and
x, y, z axes in coincidence, Fig. 21–15a, the final position of the top can be
determined using the following three steps:

1. Rotate the top about the Z (or z) axis through an angle
Fig. 21–15b.

2. Rotate the top about the x axis through an angle 
Fig. 21–15c.

3. Rotate the top about the z axis through an angle 
to obtain the final position, Fig. 20–15d.

The sequence of these three angles, then must be maintained,
since finite rotations are not vectors (see Fig. 20–1). Although this is the
case, the differential rotations and are vectors, and thus the
angular velocity of the top can be expressed in terms of the time
derivatives of the Euler angles. The angular-velocity components 
and are known as the precession, nutation, and spin, respectively.c
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Their positive directions are shown in Fig. 21–16. It is seen that these
vectors are not all perpendicular to one another; however, of the top
can still be expressed in terms of these three components.

Since the body (top) is symmetric with respect to the z or spin axis,
there is no need to attach the x, y, z axes to the top since the inertial
properties of the top will remain constant with respect to this frame
during the motion. Therefore Fig. 21–16. Hence, the
angular velocity of the body is

(21–27)

And the angular velocity of the axes is

(21–28)

Have the x, y, z axes represent principal axes of inertia for the top, and so
the moments of inertia will be represented as and 
Since Eqs. 21–26 are used to establish the rotational equations of
motion. Substituting into these equations the respective angular-velocity
components defined by Eqs. 21–27 and 21–28, their corresponding time
derivatives, and the moment of inertia components, yields

(21–29)

Each moment summation applies only at the fixed point O or the center
of mass G of the body. Since the equations represent a coupled set of
nonlinear second-order differential equations, in general a closed-form
solution may not be obtained. Instead, the Euler angles and may
be obtained graphically as functions of time using numerical analysis and
computer techniques.

A special case, however, does exist for which simplification of Eqs. 21–29
is possible. Commonly referred to as steady precession, it occurs when
the nutation angle precession and spin all remain constant.
Equations 21–29 then reduce to the form

(21–30)
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Equation 21–30 can be further simplified by noting that, from 
Eq. 21–27, so that

or

(21–31)

It is interesting to note what effects the spin has on the moment
about the x axis. To show this, consider the spinning rotor in Fig. 21–17.
Here in which case Eq. 21–30 reduces to the form

or
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Fig. 21–17

From the figure it can be seen that and act along their
respective positive axes and therefore are mutually perpendicular.
Instinctively, one would expect the rotor to fall down under the influence
of gravity! However, this is not the case at all, provided the product

is correctly chosen to counterbalance the moment 
of the rotor’s weight about O. This unusual phenomenon of rigid-body
motion is often referred to as the gyroscopic effect.
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Perhaps a more intriguing demonstration of the gyroscopic effect
comes from studying the action of a gyroscope, frequently referred to as
a gyro. A gyro is a rotor which spins at a very high rate about its axis of
symmetry. This rate of spin is considerably greater than its precessional
rate of rotation about the vertical axis. Hence, for all practical purposes,
the angular momentum of the gyro can be assumed directed along its
axis of spin. Thus, for the gyro rotor shown in Fig. 21–18, and
the magnitude of the angular momentum about point O, as determined
from Eqs. 21–11, reduces to the form Since both the
magnitude and direction of are constant as observed from x, y, z,
direct application of Eq. 21–22 yields

(21–33)

Using the right-hand rule applied to the cross product, it can be seen
that always swings (or ) toward the sense of In effect,
the change in direction of the gyro’s angular momentum, is
equivalent to the angular impulse caused by the gyro’s weight about O,
i.e., Eq. 21–20.Also, since and and

are mutually perpendicular, Eq. 21–33 reduces to Eq. 21–32.
When a gyro is mounted in gimbal rings, Fig. 21–19, it becomes free of

external moments applied to its base. Thus, in theory, its angular
momentum H will never precess but, instead, maintain its same fixed
orientation along the axis of spin when the base is rotated. This type of
gyroscope is called a free gyro and is useful as a gyrocompass when the
spin axis of the gyro is directed north. In reality, the gimbal mechanism is
never completely free of friction, so such a device is useful only for the
local navigation of ships and aircraft. The gyroscopic effect is also useful
as a means of stabilizing both the rolling motion of ships at sea and the
trajectories of missiles and projectiles. Furthermore, this effect is of
significant importance in the design of shafts and bearings for rotors
which are subjected to forced precessions.
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The spinning of the gyro within the frame
of this toy gyroscope produces angular
momentum , which is changing
direction as the frame precesses 
about the vertical axis. The gyroscope
will not fall down since the moment of its
weight W about the support is balanced
by the change in the direction of HO .
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The top shown in Fig. 21–20a has a mass of 0.5 kg and is precessing about
the vertical axis at a constant angle of If it spins with an angular
velocity determine the precession Assume that 
the axial and transverse moments of inertia of the top are

and respectively, measured with
respect to the fixed point O.

1.20110-32 kg # m2,0.45110-32 kg # m2

Vp .vs = 100 rad>s,
u = 60°.

EXAMPLE 21.7

SOLUTION
Equation 21–30 will be used for the solution since the motion is steady
precession. As shown on the free-body diagram, Fig. 21–20b, the
coordinate axes are established in the usual manner, that is, with the
positive z axis in the direction of spin, the positive Z axis in the direction
of precession, and the positive x axis in the direction of the moment

(refer to Fig. 21–16).Thus,

or

(1)

Solving this quadratic equation for the precession gives

Ans.

and

Ans.

NOTE: In reality, low precession of the top would generally be
observed, since high precession would require a larger kinetic energy.
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EXAMPLE 21.8

The 1-kg disk shown in Fig. 21–21a spins about its axis with a constant
angular velocity The block at B has a mass of 2 kg, and
by adjusting its position s one can change the precession of the disk
about its supporting pivot at O while the shaft remains horizontal.
Determine the position s that will enable the disk to have a constant
precession about the pivot. Neglect the weight of the
shaft.

vp = 0.5 rad>s

vD = 70 rad>s.

200 mm

s

D

(a)

50 mm
O

B

vp � 0.5 rad/s

vD � 70 rad/s

(b)

0.2 m

u � 90�
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B

R
9.81 N

19.62 Nz

Y

X, x

Z1, y

O

Fig. 21–21

SOLUTION
The free-body diagram of the assembly is shown in Fig. 21–21b. The
origin for both the x, y, z and X, Y, Z coordinate systems is located at
the fixed point O. In the conventional sense, the Z axis is chosen along
the axis of precession, and the z axis is along the axis of spin, so that

Since the precession is steady, Eq. 21–32 can be used for the
solution.

Substituting the required data gives

©Mx = IzÆyvz

u = 90°.

Ans. s = 0.102 m = 102 mm

(98.1 N) 10.2 m2 - 119.62 N2s = C1211 kg210.05 m22 D0.5 rad>s1-70 rad>s2
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21.6 Torque-Free Motion

When the only external force acting on a body is caused by gravity, the
general motion of the body is referred to as torque-free motion.This type
of motion is characteristic of planets, artificial satellites, and projectiles—
provided air friction is neglected.

In order to describe the characteristics of this motion, the distribution
of the body’s mass will be assumed axisymmetric. The satellite shown in
Fig. 21–22 is an example of such a body, where the z axis represents an
axis of symmetry. The origin of the x, y, z coordinates is located at the
mass center G, such that and . Since gravity is the
only external force present, the summation of moments about the mass
center is zero. From Eq. 21–21, this requires the angular momentum of
the body to be constant, i.e.,

At the instant considered, it will be assumed that the inertial frame of
reference is oriented so that the positive Z axis is directed along and
the y axis lies in the plane formed by the z and Z axes, Fig. 21–22. The
Euler angle formed between Z and z is and therefore, with this choice
of axes the angular momentum can be expressed as

Furthermore, using Eqs. 21–11, we have

Equating the respective i, j, and k components of the above two
equations yields

HG = Ivx i + Ivy j + Izvz k

HG = HG sin u j + HG cos u k
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(21–34)

or

(21–35)

In a similar manner, equating the respective i, j, k components of 
Eq. 21–27 to those of Eq. 21–34, we obtain

Solving, we get

(21–36)

Thus, for torque-free motion of an axisymmetrical body, the angle 
formed between the angular-momentum vector and the spin of the body
remains constant. Furthermore, the angular momentum precession

and spin for the body remain constant at all times during the
motion.

Eliminating from the second and third of Eqs. 21–36 yields the
following relation between the spin and precession:
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These two components of angular motion can be studied by using the
body and space cone models introduced in Sec. 20.1. The space cone
defining the precession is fixed from rotating, since the precession has a
fixed direction, while the outer surface of the body cone rolls on the
space cone’s outer surface. Try to imagine this motion in Fig. 21–23a.
The interior angle of each cone is chosen such that the resultant
angular velocity of the body is directed along the line of contact of the
two cones. This line of contact represents the instantaneous axis of
rotation for the body cone, and hence the angular velocity of both the
body cone and the body must be directed along this line. Since the spin
is a function of the moments of inertia I and of the body, Eq. 21–36,
the cone model in Fig. 21–23a is satisfactory for describing the motion,
provided Torque-free motion which meets these requirements
is called regular precession. If the spin is negative and the
precession positive. This motion is represented by the satellite motion
shown in Fig. 21–23b The cone model can again be used to
represent the motion; however, to preserve the correct vector addition
of spin and precession to obtain the angular velocity the inside
surface of the body cone must roll on the outside surface of the (fixed)
space cone. This motion is referred to as retrograde precession.
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Satellites are often given a spin before they are launched. If their angular momentum
is not collinear with the axis of spin, they will exhibit precession. In the photo on the
left, regular precession will occur since and in the photo on the right, retrograde
precession will occur since I 6 Iz .

I 7 Iz ,
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EXAMPLE 21.9

The motion of a football is observed using a slow-motion projector.
From the film, the spin of the football is seen to be directed 30°
from the horizontal, as shown in Fig. 21–24a. Also, the football is
precessing about the vertical axis at a rate If the 
ratio of the axial to transverse moments of inertia of the football 
is measured with respect to the center of mass, determine the
magnitude of the football’s spin and its angular velocity. Neglect the
effect of air resistance.

1
3,

f
#

= 3 rad>s.

30�

(a)

f � 3 rad/s
.

c
.

(b)

Z

z

u � 60�

f
.

c
.

Fig. 21–24

SOLUTION
Since the weight of the football is the only force acting, the motion is
torque-free. In the conventional sense, if the z axis is established along
the axis of spin and the Z axis along the precession axis, as shown in
Fig. 21–24b, then the angle Applying Eq. 21–37, the spin is

Ans.

Using Eqs. 21–34, where (Eq. 21–36), we have

Thus,

Ans.= 5.20 rad>s
= 21022 + 12.6022 + 14.5022

v = 21vx22 + 1vy22 + 1vz22

vz =
HG cos u

Iz
=

3I cos 60°
1
3 I

= 4.50 rad>s
vy =

HG sin u
I

=
3I sin 60°

I
= 2.60 rad>s

vx = 0

HG = f
#
I

= 3 rad>s
c
#

=
I - Iz

Iz
f
#

cos u =
I - 1

3 I
1
3 I

132 cos 60°

u = 60°.
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PROBLEMS

•21–65. The motor weighs 50 lb and has a radius of
gyration of 0.2 ft about the z axis. The shaft of the motor is
supported by bearings at A and B, and spins at a constant
rate of , while the frame has an angular
velocity of . Determine the moment which
the bearing forces at A and B exert on the shaft due to this
motion.

Vy = 52j6 rad>s
Vs = 5100k6 rad>s

21–61. Show that the angular velocity of a body, in
terms of Euler angles , , and , can be expressed as

, where i, j, and k are directed along the x, y,
z axes as shown in Fig. 21–15d.

21–62. A thin rod is initially coincident with the Z axis
when it is given three rotations defined by the Euler angles

, , and . If these rotations are given
in the order stated, determine the coordinate direction
angles , , of the axis of the rod with respect to the X, Y,
and Z axes. Are these directions the same for any order of
the rotations? Why?

21–63. The 30-lb wheel rolls without slipping. If it has a
radius of gyration about its axle AB, and the
vertical drive shaft is turning at determine the
normal reaction the wheel exerts on the ground at C.
Neglect the mass of the axle.

*21–64. The 30-lb wheel rolls without slipping. If it has a
radius of gyration about its axle AB,
determine its angular velocity so that the normal reaction
at C becomes 60 lb. Neglect the mass of the axle.

V

kAB = 1.2 ft

8 rad>s,
kAB = 1.2 ft

gba

c = 60°u = 45°f = 30°

(f
#
 cos u + c

#
)k

v = (f
#
 sin u sin c + u

#
 cos c)i + (f

#
 sin u cos c - u

#
 sin c)j +

cuf

21–66. The car travels at a constant speed of
around the horizontal curve having a radius

of 80 m. If each wheel has a mass of 16 kg, a radius of
gyration about its spinning axis, and a radius
of 400 mm, determine the difference between the normal
forces of the rear wheels, caused by the gyroscopic effect.
The distance between the wheels is 1.30 m.

kG = 300 mm

vC = 100 km>h
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Vp

Vs

60 mm

G

O

45�

Prob. 21–67

21–70. The 10-kg cone spins at a constant rate of
. Determine the constant rate at which it

precesses if .

21–71. The 10-kg cone is spinning at a constant rate of
. Determine the constant rate at which it

precesses if .f = 30°
vpvs = 150 rad>s

f = 90°
vpvs = 150 rad>s

*21–68. The top has a weight of and can be considered
as a solid cone. If it is observed to precess about the vertical
axis at a constant rate of determine its spin.5 rad>s,

3 lb

21–67. The top has a mass of 90 g, a center of mass at G,
and a radius of gyration about its axis of
symmetry. About any transverse axis acting through point O
the radius of gyration is . If the top is connected
to a ball-and-socket joint at O and the precession is

, determine the spin .Vsvp = 0.5 rad>s
kt = 35 mm

k = 18 mm

*21–72. The 1-lb top has a center of gravity at point G. If it
spins about its axis of symmetry and precesses about the
vertical axis at constant rates of and

, respectively, determine the steady state
angle . The radius of gyration of the top about the z axis is

., and about the x and y axes it is .kx = ky = 4 inkz = 1 in
u

vp = 10 rad>s
vs = 60 rad>s

•21–69. The empty aluminum beer keg has a mass of m,
center of mass at G, and radii of gyration about the x and 
y axes of , and about the z axis of ,
respectively. If the keg rolls without slipping with a constant
angular velocity, determine its largest value without having
the rim A leave the floor.

kz = 1
4 rkx = ky = 5

4 r

5 rad/s

1.5 in.

30�6 in.

Vs

Prob. 21–68

Z

G

A B

h

r
a

y

z

Prob. 21–69

A

p 

s 

300 mm

100 mm
V

V

f

Probs. 21–70/71

y
x

O

z

3 in.

vp � 10 rad/s
u

G

vs � 60 rad/s

Prob. 21–72
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21–75. The space capsule has a mass of 3.2 Mg, and about
axes passing through the mass center G the axial and
transverse radii of gyration are and ,
respectively. If it spins at , determine its
angular momentum. Precession occurs about the Z axis.

vs = 0.8 rev>s
kt = 1.85 mkz = 0.90 m

*21–76. The radius of gyration about an axis passing through
the axis of symmetry of the 2.5-Mg satellite is ,
and about any transverse axis passing through the center of
mass G, . If the satellite has a steady-state
precession of two revolutions per hour about the Z axis,
determine the rate of spin about the z axis.

kt = 3.4 m

kz = 2.3 m

•21–73. At the moment of take off, the landing gear of an
airplane is retracted with a constant angular velocity of

, while the wheel continues to spin. If the plane
takes off with a speed of , determine the
torque at A due to the gyroscopic effect. The wheel has a
mass of 50 kg, and the radius of gyration about its spinning
axis is .k = 300 mm

v = 320 km>h
vp = 2 rad>s

21–74. The projectile shown is subjected to torque-free
motion. The transverse and axial moments of inertia are I
and , respectively. If represents the angle between the
precessional axis Z and the axis of symmetry z, and 
is the angle between the angular velocity and the z
axis, show that and are related by the equation

.tan u = (I>Iz) tan b
ub

V

b

uIz

•21–77. The 4-kg disk is thrown with a spin 
If the angle is measured as 160°, determine the precession
about the Z axis.

u

vz = 6 rad>s.

B

A

0.4 m

Vp

Vs

Prob. 21–73

10�

Zz

G

2 rev/h

Prob. 21–76

6�

Vs z

G

Z

Prob. 21–75

G

Z

u

V

y

x z

b

Prob. 21–74

125 mm

vz � 6 rad/s

Z

z

u

Prob. 21–77



21.6 TORQUE-FREE MOTION 627

21

*21–80. The football has a mass of 450 g and radii of
gyration about its axis of symmetry (z axis) and its transverse
axes (x or y axis) of and ,
respectively. If the football has an angular momentum of

, determine its precession and spin .
Also, find the angle that the angular velocity vector
makes with the z axis.

b

c
#

f
#

HG = 0.02 kg # m2>s
kx = ky = 50 mmkz = 30 mm

21–79. The satellite has a mass of 100 kg and radii of
gyration about its axis of symmetry (z axis) and its transverse
axes (x or y axis) of and ,
respectively. If the satellite spins about the z axis at a constant
rate of , and precesses about the Z axis,
determine the precession and the magnitude of its angular
momentum .HG

f
#c

#
= 200 rad>s

kx = ky = 900 mmkz = 300 mm

21–78. The projectile precesses about the Z axis at a
constant rate of when it leaves the barrel of a
gun. Determine its spin and the magnitude of its angular
momentum .The projectile has a mass of 1.5 kg and radii
of gyration about its axis of symmetry (z axis) and about
its transverse axes (x and y axes) of and

, respectively.kx = ky = 125 mm
kz = 65 mm

HG

c
#f

#
= 15 rad>s

•21–81. The space capsule has a mass of 2 Mg, center of
mass at G, and radii of gyration about its axis of
symmetry (z axis) and its transverse axes (x or y axis)
of and , respectively. If the
capsule has the angular velocity shown, determine its
precession and spin . Indicate whether the precession
is regular or retrograde. Also, draw the space cone and
body cone for the motion.

c
#

f
#

kx = ky = 5.5 mkz = 2.75 m

G
y

Z

z

x
30�

f � 15 rad/s

Prob. 21–78

z Z

y

x

15�
c � 200 rad/s

Prob. 21–79

z

y

x

G

45�

V

B
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CHAPTER REVIEW

Moments and Products of Inertia
A body has six components of inertia for
any specified x,y, z axes. Three of these
are moments of inertia about each of the
axes, and three are products
of inertia, each defined from two
orthogonal planes, If either
one or both of these planes are planes of
symmetry, then the product of inertia
with respect to these planes will be zero.

Ixz .Iyz ,Ixy ,

Izz ,Iyy ,Ixx ,

The moments and products of inertia can
be determined by direct integration or by
using tabulated values. If these quantities
are to be determined with respect to axes
or planes that do not pass through the
mass center, then parallel-axis and
parallel-plane theorems must be used.

Provided the six components of inertia
are known, then the moment of inertia
about any axis can be determined using
the inertia transformation equation.

IOa = Ixxux
2 + Iyyuy

2 + Izzuz
2 - 2Ixyuxuy - 2Iyzuyuz - 2Izxuzux

Principal Moments of Inertia
At any point on or off the body, the x, y, z
axes can be oriented so that the products
of inertia will be zero. The resulting
moments of inertia are called the
principal moments of inertia, one of
which will be a maximum and the other a
minimum.

Ixz = Izx =
Lm

xz dmIzz =
Lm

rz
2 dm =

Lm
1x2 + y22 dm

Iyz = Izy =
Lm

yz dmIyy =
Lm

ry
2 dm =

Lm
1x2 + z22 dm

Ixy = Iyx =
Lm

xy dmIxx =
Lm

rx
2 dm =

Lm
1y2 + z22 dm

£
Ix 0 0
0 Iy 0
0 0 Iz

≥

Principle of Impulse and Momentum
The angular momentum for a body can be
determined about any arbitrary point A.

Once the linear and angular momentum
for the body have been formulated, then
the principle of impulse and momentum
can be used to solve problems that
involve force, velocity, and time.

Fixed Point O

Center of Mass 

Arbitrary Point 

where

Hz = -Izxvx - Izyvy + Izzvz

Hy = -Iyxvx + Iyyvy - Iyzvz

Hx = Ixxvx - Ixyvy - Ixzvz

1HO21 + ©
L

t2

t1

MO dt = 1HO22

HA = RG>A * mvG + HG

HG =
Lm
RG * 1V * RG2 dm

HO =
Lm
RO * 1V * RO2 dm

m1vG21 + ©
L

t2

t1

F dt = m1vG22

Fixed Point Center of Mass 

T = 1
2 mvG

2 + 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2T = 1
2 Ixvx

2 + 1
2 Iyvy

2 + 1
2 Izvz

2

Principle of Work and Energy
The kinetic energy for a body is usually
determined relative to a fixed point or
the body’s mass center.
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These formulations can be used with the
principle of work and energy to solve
problems that involve force, velocity, and
displacement.

Equations of Motion
There are three scalar equations of
translational motion for a rigid body that
moves in three dimensions. ©Fz = m1aG2z

©Fy = m1aG2y
©Fx = m1aG2x

The three scalar equations of rotational
motion depend upon the motion of the x,
y, z reference. Most often, these axes are
oriented so that they are principal axes
of inertia. If the axes are fixed in and
move with the body so that then
the equations are referred to as the Euler
equations of motion.

A free-body diagram should always
accompany the application of the
equations of motion.

Æ = v,

Gyroscopic Motion
The angular motion of a gyroscope is
best described using the three Euler
angles and . The angular velocity
components are called the precession 
the nutation and the spin 

If and and are constant, then the
motion is referred to as steady precession.

It is the spin of a gyro rotor that is
responsible for holding a rotor from
falling downward, and instead causing it
to precess about a vertical axis. This
phenomenon is called the gyroscopic effect.

c
#

f
#

u
#
= 0

c
#
.u

#
,

f
#
,

cf, u,

Torque-Free Motion
A body that is only subjected to a
gravitational force will have no moments
on it about its mass center, and so the
motion is described as torque-free
motion. The angular momentum for the
body about its mass center will remain
constant. This causes the body to have
both a spin and a precession. The motion
depends upon the magnitude of the
moment of inertia of a symmetric body
about the spin axis, versus that about a
perpendicular axis, I.

Iz ,

©Mz = 0©My = 0,

©Mx = -If
#

2 sin u cos u + Izf
#
 sin u1f#  cos u + c

# 2

æ Z V

©Mz = Izv
#

z - IxÆyvx + IyÆxvy

©My = Iyv
#

y - IzÆxvz + IxÆzvx

©Mx = Ixv
#

x - IyÆzvy + IzÆyvz

æ = V

©Mz = Izv
#

z - 1Ix - Iy2vxvy

©My = Iyv
#

y - 1Iz - Ix2vzvx

©Mx = Ixv
#

x - 1Iy - Iz2vyvz

c
#

=
I - Iz

IIz
HG cos u

f
#

=
HG

I

u = constant

u

Y

y

f
u

 ·
vp � f

 ·
vn � u

 ·
vs � c

X
x

Zz

O

G

f

T1 + ©U1-2 = T2
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