
Planar Kinetics of a
Rigid Body: Force and
Acceleration

17
CHAPTER OBJECTIVES

• To introduce the methods used to determine the mass moment of
inertia of a body.

• To develop the planar kinetic equations of motion for a symmetric
rigid body.

• To discuss applications of these equations to bodies undergoing
translation, rotation about a fixed axis, and general plane motion.

17.1 Mass Moment of Inertia

Since a body has a definite size and shape, an applied nonconcurrent force
system can cause the body to both translate and rotate. The translational
aspects of the motion were studied in Chapter 13 and are governed by the
equation It will be shown in the next section that the rotational
aspects, caused by a moment M, are governed by an equation of the form

The symbol I in this equation is termed the mass moment of
inertia. By comparison, the moment of inertia is a measure of the resistance
of a body to angular acceleration in the same way that mass is
a measure of the body’s resistance to acceleration 1F = ma2.1M = IA2
M = IA.

F = ma.
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The flywheel on the engine of this tractor has a large moment of inertia about its axis
of rotation. Once it is set into motion, it will be difficult to stop, and this in turn will
prevent the engine from stalling and instead will allow it to maintain a constant power.

*Another property of the body, which measures the symmetry of the body’s mass with
respect to a coordinate system, is the product of inertia.This property applies to the three-
dimensional motion of a body and will be discussed in Chapter 21.

r

dm

z

Fig. 17–1

We define the moment of inertia as the integral of the “second moment”
about an axis of all the elements of mass dm which compose the body.*
For example, the body’s moment of inertia about the z axis in Fig. 17–1 is

(17–1)

Here the “moment arm” r is the perpendicular distance from the z axis
to the arbitrary element dm. Since the formulation involves r, the value
of I is different for each axis about which it is computed. In the study of
planar kinetics, the axis chosen for analysis generally passes through the
body’s mass center G and is always perpendicular to the plane of motion.
The moment of inertia about this axis will be denoted as Since r is
squared in Eq. 17–1, the mass moment of inertia is always a positive
quantity. Common units used for its measurement are or 

If the body consists of material having a variable density, (x,y, z),
the elemental mass dm of the body can be expressed in terms of its
density and volume as Substituting dm into Eq. 17–1, the
body’s moment of inertia is then computed using volume elements for
integration; i.e.,

(17–2)I =
LV
r2r dV

dm = r dV.

r = r
slug # ft2.kg # m2

IG .

I =
Lm
r2 dm
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In the special case of being a constant, this term may be factored out of
the integral, and the integration is then purely a function of geometry,

(17–3)

When the volume element chosen for integration has infinitesimal
dimensions in all three directions, Fig. 17–2a, the moment of inertia of
the body must be determined using “triple integration.” The integration
process can, however, be simplified to a single integration provided the
chosen volume element has a differential size or thickness in only one
direction. Shell or disk elements are often used for this purpose.

I = r
LV
r2 dV

r

Procedure for Analysis

To obtain the moment of inertia by integration, we will consider
only symmetric bodies having volumes which are generated by
revolving a curve about an axis.An example of such a body is shown
in Fig. 17–2a. Two types of differential elements can be chosen.

Shell Element.
• If a shell element having a height z, radius and thickness dy

is chosen for integration, Fig. 17–2b, then the volume is

• This element may be used in Eq. 17–2 or 17–3 for determining the
moment of inertia of the body about the z axis, since the entire
element, due to its “thinness,” lies at the same perpendicular
distance from the z axis (see Example 17.1).

Disk Element.
• If a disk element having a radius y and a thickness dz is chosen

for integration, Fig. 17–2c, then the volume is 
• This element is finite in the radial direction, and consequently its

parts do not all lie at the same radial distance r from the z axis.As
a result, Eq. 17–2 or 17–3 cannot be used to determine directly.
Instead, to perform the integration it is first necessary to
determine the moment of inertia of the element about the z axis
and then integrate this result (see Example 17.2).

Iz

dV = 1py22dz.

r = y

Iz

dV = 12py21z2dy.
r = y,

z

y

x

dm � r dV

x
y

z

(a)

(b)

z

y

x
y dy

z

(c)

z

y

x

z

dz

y

Fig. 17–2
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Determine the moment of inertia of the cylinder shown in Fig. 17–3a
about the z axis. The density of the material, is constant.r,

EXAMPLE 17.1

z

y

x

O

(a)

R

2
h

2
h

(b)

z

y

x

O

r dr

2
h

2
h

Fig. 17–3

SOLUTION

Shell Element. This problem can be solved using the shell element in
Fig. 17–3b and a single integration. The volume of the element is

so that its mass is 
Since the entire element lies at the same distance r from the z axis, the
moment of inertia of the element is

Integrating over the entire region of the cylinder yields

The mass of the cylinder is

so that

Ans.Iz =
1
2
mR2

m =
Lm
dm = r2ph

L

R

0
r dr = rphR2

Iz =
Lm
r2 dm = r2ph

L

R

0
r3 dr =

rp

2
R4h

dIz = r2dm = r2phr3 dr

dm = rdV = r12phr dr2.dV = 12pr21h2 dr,
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EXAMPLE 17.2

If the density of the material is determine the moment of
inertia of the solid in Fig 17–4a about the y axis.

5 slug>ft3,

y

x

1 ft

1 ft

y2 � x

(a)

y

x

1 ft
y

dy

(x,y)

x
1 ft

(b)

Fig. 17–4

SOLUTION

Disk Element. The moment of inertia will be found using a disk
element, as shown in Fig. 17–4b. Here the element intersects the curve
at the arbitrary point (x,y) and has a mass

Although all portions of the element are not located at the same
distance from the y axis, it is still possible to determine the moment of
inertia of the element about the y axis. In the preceding example it
was shown that the moment of inertia of a cylinder about its
longitudinal axis is where m and R are the mass and radius
of the cylinder. Since the height is not involved in this formula, the
disk itself can be thought of as a cylinder.Thus, for the disk element in
Fig. 17–4b, we have

Substituting and integrating with respect to y,
from to yields the moment of inertia for the entire solid.

Ans.Iy =
p15 slug>ft32

2 L

1 ft

0
x4 dy =

p152
2 L

1 ft

0
y8 dy = 0.873 slug # ft2

y = 1 ft,y = 0
r = 5 slug>ft3,x = y2,

dIy = 1
21dm2x2 = 1

2[r1px22 dy]x2

I = 1
2mR

2,

dIy

dm = r dV = r1px22 dy
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Parallel-Axis Theorem. If the moment of inertia of the body
about an axis passing through the body’s mass center is known, then the
moment of inertia about any other parallel axis can be determined by
using the parallel-axis theorem. This theorem can be derived by
considering the body shown in Fig. 17–5. Here the axis passes through
the mass center G, whereas the corresponding parallel z axis lies at a
constant distance d away. Selecting the differential element of mass dm,
which is located at point ( ), and using the Pythagorean theorem,

we can express the moment of inertia of the body
about the z axis as

Since the first integral represents The second
integral equals zero, since the axis passes through the body’s mass
center, i.e., since Finally, the third integralx¿ = 0.1x¿dm = x¿m = 0

z¿
IG .r¿2 = x¿2 + y¿2,

=
Lm
1x¿2 + y¿22 dm + 2d

Lm
x¿ dm + d2

Lm
dm

I =
Lm
r2 dm =

Lm
[1d + x¿22 + y¿2] dm

r2 = 1d + x¿22 + y¿2,
y¿x¿,

z¿

y¿

x¿

z z¿

y¿r¿

x¿d

r

dm

A G

Fig. 17–5
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represents the total mass m of the body. Hence, the moment of inertia
about the z axis can be written as

(17–4)

where

moment of inertia about the axis passing through the mass
center G
mass of the body

perpendicular distance between the parallel and axes

Radius of Gyration. Occasionally, the moment of inertia of a body
about a specified axis is reported in handbooks using the radius of
gyration, k. This is a geometrical property which has units of length.
When it and the body’s mass m are known, the body’s moment of inertia
is determined from the equation

(17–5)

Note the similarity between the definition of k in this formula and r in
the equation which defines the moment of inertia of an
elemental mass dm of the body about an axis.

Composite Bodies. If a body consists of a number of simple
shapes such as disks, spheres, and rods, the moment of inertia of the body
about any axis can be determined by adding algebraically the moments of
inertia of all the composite shapes computed about the axis. Algebraic
addition is necessary since a composite part must be considered as a
negative quantity if it has already been counted as a piece of another
part—for example, a “hole” subtracted from a solid plate. The parallel-
axis theorem is needed for the calculations if the center of mass of
each composite part does not lie on the axis. For the calculation, then,

Here for each of the composite parts is determined
by integration, or for simple shapes, such as rods and disks, it can be
found from a table, such as the one given on the inside back cover of
this book.

IGI = ©1IG + md22.

dI = r2 dm,

I = mk2 or k =
A

I
m

z¿zd =
m =

z¿IG =

I = IG + md2
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O

250 mm
125 mm

G

(a)

Thickness 10 mm

250 mm

G G– 125 mm

(b)

Fig. 17–6

If the plate shown in Fig. 17–6a has a density of and a
thickness of 10 mm, determine its moment of inertia about an axis
directed perpendicular to the page and passing through point O.

8000 kg>m3

EXAMPLE 17.3

SOLUTION

The plate consists of two composite parts, the 250-mm-radius disk
minus a 125-mm-radius disk, Fig. 17–6b. The moment of inertia about
O can be determined by computing the moment of inertia of each of
these parts about O and then adding the results algebraically. The
calculations are performed by using the parallel-axis theorem in
conjunction with the data listed in the table on the inside back cover.

Disk. The moment of inertia of a disk about the centroidal axis
perpendicular to the plane of the disk is The mass center
of the disk is located at a distance of 0.25 m from point O. Thus,

Hole. For the 125-mm-radius disk (hole), we have

The moment of inertia of the plate about point O is therefore

Ans.= 1.20 kg # m2

= 1.473 kg # m2 - 0.276 kg # m2

IO = 1Id2O - 1Ih2O

= 0.276 kg # m2

=
1
2
13.927 kg210.125 m22 + 13.927 kg210.25 m22

1Ih2O = 1
2mhrh

2 + mhd2

mh = rhVh = 8000 kg>m3 [p10.125 m2210.01 m2] = 3.927 kg

= 1.473 kg # m2

=
1
2
115.71 kg210.25 m22 + 115.71 kg210.25 m22

1Id2O = 1
2mdrd

2 + mdd2

md = rdVd = 8000 kg>m3 [p10.25 m2210.01 m2] = 15.71 kg

IG = 1
2mr

2.
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EXAMPLE 17.4

The pendulum in Fig. 17–7 is suspended from the pin at O and consists
of two thin rods, each having a weight of 10 lb. Determine the moment
of inertia of the pendulum about an axis passing through (a) point O,
and (b) the mass center G of the pendulum.

SOLUTION

Part (a). Using the table on the inside back cover, the moment of
inertia of rod OA about an axis perpendicular to the page and passing
through point O of the rod is Hence,

This same value can be obtained using and the parallel-
axis theorem.

For rod BC we have

The moment of inertia of the pendulum about O is therefore

Ans.

Part (b). The mass center G will be located relative to point O.
Assuming this distance to be Fig. 17–7, and using the formula for
determining the mass center, we have

The moment of inertia may be found in the same manner as 
which requires successive applications of the parallel-axis theorem to
transfer the moments of inertia of rods OA and BC to G. A more
direct solution, however, involves using the result for i.e.,

Ans.IG = 0.362 slug # ft2

 1.76 slug # ft2 = IG + a 20 lb

32.2 ft>s2 b11.50 ft22IO = IG + md2;

IO ,

IO ,IG

y =
©y'm
©m

=
1110>32.22 + 2110>32.22
110>32.22 + 110>32.22 = 1.50 ft

y,

IO = 0.414 + 1.346 = 1.76 slug # ft2

= 1.346 slug # ft2

1IBC2O =
1
12
ml2 + md2 =

1
12
a 10 lb

32.2 ft>s2b12 ft22 + a 10 lb

32.2 ft>s2b12 ft22

= 0.414 slug # ft2

1IOA2O =
1
12
ml2 + md2 =

1
12
a 10 lb

32.2 ft>s2b12 ft22 + a 10 lb

32.2 ft>s2b11 ft22

IG = 1
12ml

2

1IOA2O =
1
3
ml2 =

1
3
a 10 lb

32.2 ft>s2 b12 ft22 = 0.414 slug # ft2

IO = 1
3ml

2.

2 ft

y–

O

G

A
B C

1 ft 1 ft

Fig. 17–7
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17–3. The paraboloid is formed by revolving the shaded
area around the x axis. Determine the radius of gyration .
The density of the material is .r = 5 Mg>m3

kx

17–2. The right circular cone is formed by revolving the
shaded area around the x axis. Determine the moment of
inertia and express the result in terms of the total mass m
of the cone. The cone has a constant density .r

Ix

•17–1. Determine the moment of inertia for the slender
rod. The rod’s density and cross-sectional area A are
constant. Express the result in terms of the rod’s total mass m.

r

Iy

*17–4. The frustum is formed by rotating the shaded area
around the x axis. Determine the moment of inertia and
express the result in terms of the total mass m of the
frustum. The frustum has a constant density .r

Ix

PROBLEMS

x

y

z

A

l

Prob. 17–1

y

x

r

 r–
h xy �

h

Prob. 17–2

y

x

y2 � 50x

200 mm

100 mm

Prob. 17–3

y

x

2b

b–a x � by �

a

z

b

Prob. 17–4
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x2 � y2 � r2

y

x

Prob. 17–6

a–2
a–2

a–2

a–2

h

y

x

z

Prob 17–7

z

z �      (r0 � y)h––

y

h

x
r0

r0

Prob. 17–8

y

x

a

 a2
–
h xy2 =

h

Prob. 17–5

17–7. Determine the moment of inertia of the homogeneous
pyramid of mass m about the z axis. The density of the
material is . Suggestion: Use a rectangular plate element
having a volume of .dV = (2x)(2y)dz

r

*17–8. Determine the mass moment of inertia of the
cone formed by revolving the shaded area around the axis.
The density of the material is . Express the result in terms
of the mass of the cone.m

r

z
Iz

•17–5. The paraboloid is formed by revolving the shaded
area around the x axis. Determine the moment of inertia
about the x axis and express the result in terms of the total
mass m of the paraboloid. The material has a constant
density .r

17–6. The hemisphere is formed by rotating the shaded
area around the y axis. Determine the moment of inertia 
and express the result in terms of the total mass m of the
hemisphere. The material has a constant density .r

Iy
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O

1 ft

2 ft

0.5 ft

G

0.25 ft

1 ft

Probs. 17–11/12

z �    y2

x

y

z

1
4

2 m

1 m

Prob. 17–9

•17–9. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the 
axis. The density of the material is . Express the result in
terms of the mass of the solid.m

r

y
Iy 17–11. Determine the moment of inertia of the assembly

about an axis that is perpendicular to the page and passes
through the center of mass G. The material has a specific
weight of .

*17–12. Determine the moment of inertia of the assembly
about an axis that is perpendicular to the page and passes
through point O. The material has a specific weight of

.g = 90 lb>ft3

g = 90 lb>ft3

17–10. Determine the mass moment of inertia of the
solid formed by revolving the shaded area around the 
axis. The density of the material is . Express the result in
terms of the mass of the semi-ellipsoid.m

r

y
Iy •17–13. If the large ring, small ring and each of the spokes

weigh 100 lb, 15 lb, and 20 lb, respectively, determine the
mass moment of inertia of the wheel about an axis
perpendicular to the page and passing through point A.

y

a

b

z

x

�       � 1y2
––
a2

z2––
b2

Prob. 17–10

A

O

1 ft

4 ft

Prob. 17–13
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O

a

aa

Prob. 17–15

O

3 ft1 ft

1 ft

2 ft

Prob. 17–16

2 ft 3 ft

0.5 ft

0.25 ft

x

Prob. 17–17

x

4 in.

1 in.

0.5 in. 0.5 in.

1 in.0.5 in. 0.5 in.1 in.

1 in. 1 in.

1 in.

0.5 in.

Prob. 17–18

*17–16. The pendulum consists of a plate having a weight of
12 lb and a slender rod having a weight of 4 lb. Determine
the radius of gyration of the pendulum about an axis
perpendicular to the page and passing through point O.

17–15. Each of the three slender rods has a mass m.
Determine the moment of inertia of the assembly about an
axis that is perpendicular to the page and passes through
the center point O.

17–14. The pendulum consists of the 3-kg slender rod and
the 5-kg thin plate. Determine the location of the center
of mass G of the pendulum; then calculate the moment of
inertia of the pendulum about an axis perpendicular to the
page and passing through G.

y

•17–17. Determine the moment of inertia of the solid steel
assembly about the x axis. Steel has a specific weight of

.gst = 490 lb>ft3
G

2 m

1 m

0.5 m

y

O

Prob. 17–14

17–18. Determine the moment of inertia of the center
crank about the x axis.The material is steel having a specific
weight of .gst = 490 lb>ft3
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90 mm

50 mm

20 mm

20 mm

20 mm

x

x¿

50 mm
30 mm

30 mm

30 mm

180 mm

Probs. 17–19/20

450 mm

A

O

B

100 mm

Prob. 17–21

17–22. Determine the mass moment of inertia of the thin
plate about an axis perpendicular to the page and passing
through point O. The material has a mass per unit area of

.20 kg>m2

•17–21. Determine the mass moment of inertia of the
pendulum about an axis perpendicular to the page and
passing through point O.The slender rod has a mass of 10 kg
and the sphere has a mass of 15 kg.

17–19. Determine the moment of inertia of the overhung
crank about the x axis. The material is steel for which the
density is .

*17–20. Determine the moment of inertia of the overhung
crank about the axis. The material is steel for which the
density is .r = 7.85 Mg>m3

x¿

r = 7.85 Mg>m3

17–23. Determine the mass moment of inertia of the thin
plate about an axis perpendicular to the page and passing
through point O. The material has a mass per unit area of

.20 kg>m2

400 mm

150 mm

400 mm

O

50 mm

50 mm
150 mm

150 mm 150 mm

Prob. 17–22

200 mm

200 mm

O

200 mm

Prob. 17–23
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17.2 Planar Kinetic Equations of Motion

In the following analysis we will limit our study of planar kinetics to rigid
bodies which, along with their loadings, are considered to be symmetrical
with respect to a fixed reference plane.* Since the motion of the body can
be viewed within the reference plane, all the forces (and couple moments)
acting on the body can then be projected onto the plane. An example of
an arbitrary body of this type is shown in Fig. 17–8a. Here the inertial
frame of reference x, y, z has its origin coincident with the arbitrary point
P in the body. By definition, these axes do not rotate and are either fixed or
translate with constant velocity

Equation of Translational Motion. The external forces acting
on the body in Fig. 17–8a represent the effect of gravitational, electrical,
magnetic, or contact forces between adjacent bodies. Since this force
system has been considered previously in Sec. 13.3 for the analysis of a
system of particles, the resulting Eq. 13–6 can be used here, in which case

This equation is referred to as the translational equation of motion for
the mass center of a rigid body. It states that the sum of all the external
forces acting on the body is equal to the body’s mass times the acceleration
of its mass center G.

For motion of the body in the x–y plane, the translational equation of
motion may be written in the form of two independent scalar equations,
namely,

©Fy = m1aG2y
©Fx = m1aG2x

©F = maG

y

x

G

W

P

F1

M1

M2

F4

F3

F2

(a)

A

V

Fig. 17–8

*By doing this, the rotational equation of motion reduces to a rather simplified form.
The more general case of body shape and loading is considered in Chapter 21.
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Equation of Rotational Motion. We will now determine the
effects caused by the moments of the external force system computed
about an axis perpendicular to the plane of motion (the z axis) and
passing through point P. As shown on the free-body diagram of the ith
particle, Fig. 17–8b, represents the resultant external force acting on the
particle, and is the resultant of the internal forces caused by interactions
with adjacent particles. If the particle has a mass and its acceleration
is then its kinetic diagram is shown in Fig. 17–8c. Summing moments
about point P, we require

or

The moments about P can also be expressed in terms of the acceleration
of point P, Fig. 17–8d. If the body has an angular acceleration and
angular velocity then using Eq. 16–18 we have

The last term is zero, since Expressing the vectors with
Cartesian components and carrying out the cross-product operations
yields

a

Letting and integrating with respect to the entire mass m of the
body, we obtain the resultant moment equation

a

Here represents only the moment of the external forces acting on
the body about point P. The resultant moment of the internal forces is
zero, since for the entire body these forces occur in equal and opposite
collinear pairs and thus the moment of each pair of forces about P
cancels. The integrals in the first and second terms on the right are used
to locate the body’s center of mass G with respect to P, since

and Fig. 17–8d. Also, the last integral
represents the body’s moment of inertia about the z axis, i.e.,

Thus,

a (17–6)©MP = -ym1aP2x + xm1aP2y + IPa

IP = 1r
2dm.

xm = 1x dm,ym = 1y dm

©MP

©MP = - a
Lm
y dmb1aP2x + a

Lm
x dmb1aP2y + a

Lm
r2dmba

mi: dm
1MP2i = mi[-y1aP2x + x1aP2y + ar2]

 1MP2i k = mi[-y1aP2x + x1aP2y + ax2 + ay2]k

  + 1xi + yj2 * [ak * 1xi + yj2]6
 1MP2i k = mi51xi + yj2 * [1aP2x i + 1aP2y j]

r * r = 0.

 = mi[r * aP + r * 1A * r2 - v21r * r2]
 1MP2i = mi r * 1aP + A * r - v2r2

V,
A

1MP2i = r * mi ai

r * Fi + r * fi = r * mi ai

ai ,
mi

fi
Fi

y

xP

(c)

Particle kinetic diagram

i
miaix

yr

=
y

xP

(d)

_
x

_
r

aP

G
_
y

aG

A

V

Fig. 17–8 (cont.)

y

xP

(b)

Particle free-body diagram

i
fi

Fi
x

yr
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It is possible to reduce this equation to a simpler form if point P
coincides with the mass center G for the body. If this is the case, then

and therefore* 

(17–7)

This rotational equation of motion states that the sum of the moments of
all the external forces about the body’s mass center G is equal to the
product of the moment of inertia of the body about an axis passing
through G and the body’s angular acceleration.

Equation 17–6 can also be rewritten in terms of the x and y components
of and the body’s moment of inertia If point G is located at ( ),
Fig. 17–8d, then by the parallel-axis theorem,
Substituting into Eq. 17–6 and rearranging terms, we get

a (17–8)

From the kinematic diagram of Fig. 17–8d, can be expressed in terms
of as

Carrying out the cross product and equating the respective i and j
components yields the two scalar equations

From these equations, and
Substituting these results into Eq. 17–8

and simplifying gives

a (17–9)

This important result indicates that when moments of the external forces
shown on the free-body diagram are summed about point P, Fig. 17–8e,
they are equivalent to the sum of the “kinetic moments” of the components
of about P plus the “kinetic moment” of Fig. 17–8f. In other
words, when the “kinetic moments,” are computed, Fig. 17–8f,
the vectors and are treated as sliding vectors; that is, they
can act at any point along their line of action. In a similar manner,
can be treated as a free vector and can therefore act at any point. It is
important to keep in mind, however, that and are not the same
as a force or a couple moment. Instead, they are caused by the external
effects of forces and couple moments acting on the body. With this in
mind we can therefore write Eq. 17–9 in a more general form as

(17–10)©MP = ©1mk2P

IGAmaG

IGA
m1aG2ym1aG2x

©1mk2P ,
IGA,maG

©MP = -ym1aG2x + xm1aG2y + IGa

[1aP2y + xa] = [1aG2y + yv2].
[-1aP2x + ya] = [-1aG2x - xv2]

1aG2y = 1aP2y + xa - yv2

1aG2x = 1aP2x - ya - xv2

1aG2x i + 1aG2y j = 1aP2x i + 1aP2y j + ak * 1x i + y j2 - v21x i + y j2
aG = aP + A * r - v2r

aG
aP

©MP = ym[-1aP2x + ya] + xm[1aP2y + xa] + IGa

IP = IG + m1x2 + y22.yx,IG .aG

©MG = IGa

x = y = 0,

* It also reduces to this same simple form if point P is a fixed point (see
Eq. 17–16) or the acceleration of point P is directed along the line PG.

©MP = IPa

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A
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General Application of the Equations of Motion. To
summarize this analysis, three independent scalar equations can be
written to describe the general plane motion of a symmetrical rigid body.

or (17–11)

When applying these equations, one should always draw a free-body
diagram, Fig. 17–8e, in order to account for the terms involved in 

or In some problems it may also be helpful to draw
the kinetic diagram for the body, Fig. 17–8f. This diagram graphically
accounts for the terms and It is especially
convenient when used to determine the components of and the
moment of these components in * 

17.3 Equations of Motion: Translation

When the rigid body in Fig. 17–9a undergoes a translation, all the particles
of the body have the same acceleration. Furthermore, in which
case the rotational equation of motion applied at point G reduces to a
simplified form, namely, Application of this and the force
equations of motion will now be discussed for each of the two types of
translation.

Rectilinear Translation. When a body is subjected to rectilinear
translation, all the particles of the body (slab) travel along parallel straight-
line paths. The free-body and kinetic diagrams are shown in Fig. 17–9b.
Since only is shown on the kinetic diagram. Hence, the
equations of motion which apply in this case become

(17–12)
©Fx = m1aG2x
©Fy = m1aG2y

©MG = 0

maGIGA = 0,

©MG = 0.

A = 0,

©1mk2P .
maG

IGA.m1aG2y ,m1aG2x ,

©MP .©MG ,©Fy ,
©Fx ,

©MP = ©1mk2P
©MG = IGa
©Fy = m1aG2y
©Fx = m1aG2x

* For this reason, the kinetic diagram will be used in the solution of an example problem
whenever is applied.©MP = ©1mk2P

Fig. 17–9

F1
F4

F3

F2

G

W

y

xP

(e)

Free-body diagram

M1

M2

y

xP

(f)

Kinetic diagram

m(aG)x_
y

G

m(aG)y

IG

_
x

A

Fig. 17–8 (cont.)

G

M2

M1

F1

F4

F2

F3

(a)
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G
M2

M1

F1

F4

F2

F3

(b)

�
A

W

G

A

d maG
Rec

til
in

ea
r

Tra
nsla

tio
n

It is also possible to sum moments about other points on or off the body,
in which case the moment of must be taken into account. For
example, if point A is chosen, which lies at a perpendicular distance d
from the line of action of the following moment equation applies:

a

Here the sum of moments of the external forces and couple moments
about A ( free-body diagram) equals the moment of about A
( kinetic diagram).

Curvilinear Translation. When a rigid body is subjected to
curvilinear translation, all the particles of the body travel along parallel
curved paths. For analysis, it is often convenient to use an inertial
coordinate system having an origin which coincides with the body’s mass
center at the instant considered, and axes which are oriented in the
normal and tangential directions to the path of motion, Fig. 17–9c. The
three scalar equations of motion are then

(17–13)

If moments are summed about the arbitrary point B, Fig. 17–9c, then it
is necessary to account for the moments, of the two
components and about this point. From the kinetic
diagram, h and e represent the perpendicular distances (or “moment
arms”) from B to the lines of action of the components. The required
moment equation therefore becomes

a ©MB = e[m1aG2t] - h[m1aG2n]+©MB = ©1mk2B ;

m1aG2tm1aG2n
©1mk2B ,

©Fn = m1aG2n
©Ft = m1aG2t

©MG = 0

©1mk2A ,
maG©MA ,

©MA = 1maG2d+©MA = ©1mk2A ;

maG ,

maG

�
G

M2
M1

F1

F4

F2

(c)

B

W

G

m(aG)t

Curvilinear

Translation

t

n

t

n

B

e

h

m(aG)n
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Procedure for Analysis

Kinetic problems involving rigid-body translation can be solved
using the following procedure.

Free-Body Diagram.
• Establish the x, y or n, t inertial coordinate system and draw the

free-body diagram in order to account for all the external forces
and couple moments that act on the body.

• The direction and sense of the acceleration of the body’s mass
center should be established.

• Identify the unknowns in the problem.
• If it is decided that the rotational equation of motion

is to be used in the solution, then consider
drawing the kinetic diagram, since it graphically accounts for the
components or and is therefore
convenient for “visualizing” the terms needed in the moment
sum

Equations of Motion.
• Apply the three equations of motion in accordance with the

established sign convention.
• To simplify the analysis, the moment equation can be

replaced by the more general equation where
point P is usually located at the intersection of the lines of action
of as many unknown forces as possible.

• If the body is in contact with a rough surface and slipping occurs,
use the friction equation Remember, F always acts on
the body so as to oppose the motion of the body relative to the
surface it contacts.

Kinematics.
• Use kinematics to determine the velocity and position of the body.
• For rectilinear translation with variable acceleration

• For rectilinear translation with constant acceleration

• For curvilinear translation

1aG2t = dvG>dt, 1aG2tdsG = vGdvG,1aG2t = ar
1aG2n = vG2 >r = v2r

sG = 1sG20 + 1vG20t + 1
2aGt

2

vG = 1vG20 + aGt vG
2 = 1vG202 + 2aG[sG - 1sG20]

aG = dvG>dt aGdsG = vGdvG vG = dsG>dt

F = mkN.

©MP = ©1mk2P ,
©MG = 0

©1mk2P .

m1aG2nm1aG2t ,m1aG2ym1aG2x ,

©MP = ©1mk2P

aG

NA

maG

T

W

NB

G
d

G

B

B

A

�

The free-body and kinetic diagrams for
this boat and trailer are drawn first in
order to apply the equations of motion.
Here the forces on the free-body
diagram cause the effect shown on the
kinetic diagram. If moments are
summed about the mass center, G,
then However, if moments
are summed about point B then
c+©MB = maG1d2.

©MG = 0.
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EXAMPLE 17.5

The car shown in Fig. 17–10a has a mass of 2 Mg and a center of mass
at G. Determine the acceleration if the rear “driving” wheels are
always slipping, whereas the front wheels are free to rotate. Neglect
the mass of the wheels. The coefficient of kinetic friction between the
wheels and the road is 

SOLUTION I

Free-Body Diagram. As shown in Fig. 17–10b, the rear-wheel
frictional force pushes the car forward, and since slipping occurs,

The frictional forces acting on the front wheels are zero,
since these wheels have negligible mass.*  There are three unknowns in
the problem, and Here we will sum moments about the mass
center. The car (point G) accelerates to the left, i.e., in the negative x
direction, Fig. 17–10b.

Equations of Motion.

(1)

(2)

a (3)

Solving,

Ans.

SOLUTION II

Free-Body and Kinetic Diagrams. If the “moment” equation is
applied about point A, then the unknown will be eliminated from the
equation.To “visualize” the moment of about A, we will include the
kinetic diagram as part of the analysis, Fig. 17–10c.

Equation of Motion.

a

Solving this and Eq. 1 for leads to a simpler solution than that
obtained from Eqs. 1 to 3.

aG

12000 kg2aG10.3 m2
NB12 m2 - [200019.812 N]11.25 m2 =+©MA = ©1mk2A ;

maG
NA

NB = 12.7 kN

NA = 6.88 kN

aG = 1.59 m>s2 ;

-NA11.25 m2 - 0.25NB10.3 m2 + NB10.75 m2 = 0+©MG = 0;

NA + NB - 200019.812 N = 0+ c©Fy = m1aG2y ;
-0.25NB = -12000 kg2aG:+ ©Fx = m1aG2x ;

aG .NB ,NA ,

FB = 0.25NB .
FB

mk = 0.25.

* With negligible wheel mass, and the frictional force at A required to turn the
wheel is zero. If the wheels’ mass were included, then the solution would be more involved,
since a general-plane-motion analysis of the wheels would have to be considered (see
Sec. 17.5).

Ia = 0

G

0.75 m1.25 m

(c)

2000 (9.81) N

A

NA NB

FB � 0.25 NB

G

0.3 mA

�

2000 aG

0.3 m

Fig. 17–10

0.3 m

0.75 m1.25 m
B

(a)

A

G

G

0.75 m
1.25 m

(b)

2000 (9.81) N

0.3 m

NA NB

FB � 0.25 NB

y

x

aG

A
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EXAMPLE 17.6

The motorcycle shown in Fig. 17–11a has a mass of 125 kg and a center
of mass at while the rider has a mass of 75 kg and a center of mass
at Determine the minimum coefficient of static friction between
the wheels and the pavement in order for the rider to do a “wheely,”
i.e., lift the front wheel off the ground as shown in the photo. What
acceleration is necessary to do this? Neglect the mass of the wheels
and assume that the front wheel is free to roll.

G2 .
G1 ,

(b)

AB
0.4 m 0.4 m

0.7 m

0.3 m

0.6 m

75 kg aG

NB

FB

735.75 N
1226.25 N

�

B

NA � 0

125 kg aG

Fig. 17–11

0.3 m

0.6 m

AB
0.4 m 0.4 m 0.7 m

G2

(a)

G1

SOLUTION

Free-Body and Kinetic Diagrams. In this problem we will consider
both the motorcycle and the rider as a single system. It is possible first to
determine the location of the center of mass for this “system” by using
the equations and Here, however, we
will consider the weight and mass of the motorcycle and rider seperate
as shown on the free-body and kinetic diagrams, Fig. 17–11b. Both of
these parts move with the same acceleration.We have assumed that the
front wheel is about to leave the ground, so that the normal reaction

The three unknowns in the problem are and 

Equations of Motion.

(1)

a

(2)

Solving,

Ans.

Thus the minimum coefficient of static friction is

Ans.1ms2min =
FB
NB

=
1790 N
1962 N

= 0.912

FB = 1790 N

NB = 1962 N

aG = 8.95 m>s2 :

-175 kg aG210.9 m2 - 1125 kg aG210.6 m2
-1735.75 N210.4 m2 - 11226.25 N210.8 m2 =+©MB = ©1mk2B ;

NB - 735.75 N - 1226.25 N = 0+ c©Fy = m1aG2y ;
FB = 175 kg + 125 kg2aG:+ ©Fx = m1aG2x ;

aG .FB ,NB ,NA L 0.

y = ©y'm>©m.x = ©x'm>©m
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EXAMPLE 17.7

A uniform 50-kg crate rests on a horizontal surface for which the
coefficient of kinetic friction is Determine the acceleration
if a force of is applied to the crate as shown in Fig. 17–12a.P = 600 N

mk = 0.2.

P � 600 N

0.5 m

0.5 m

0.3 m

x

O A

G

490.5 N

NC

F � 0.2 NC

(b)

x

y

aG

Fig. 17–12

1 m

1 m0.8 m

P � 600 N

(a)

SOLUTION
Free-Body Diagram. The force P can cause the crate either to slide
or to tip over. As shown in Fig. 17–12b, it is assumed that the crate
slides, so that Also, the resultant normal force 
acts at O, a distance x (where ) from the crate’s center
line.*  The three unknowns are x, and 

Equations of Motion.

(1)

(2)

a (3)

Solving,

Ans.

Since indeed the crate slides as originally
assumed.

NOTE: If the solution had given a value of the problem
would have to be reworked since tipping occurs. If this were the case,

would act at the corner point A and F … 0.2NC .NC

x 7 0.5 m,

x = 0.467 m 6 0.5 m,

aG = 10.0 m>s2 :
x = 0.467 m

NC = 490.5 N

-600 N10.3 m2 + NC1x2 - 0.2NC10.5 m2 = 0+©MG = 0;

NC - 490.5 N = 0+ c©Fy = m1aG2y ;
600 N - 0.2NC = 150 kg2aG:+ ©Fx = m1aG2x ;

aG .NC ,
0 6 x … 0.5 m

NCF = mkNC = 0.2NC .

* The line of action of does not necessarily pass through the mass center 
since must counteract the tendency for tipping caused by P. See Sec. 8.1 of
Engineering Mechanics: Statics.

NC
G 1x = 02,NC
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EXAMPLE 17.8

The 100-kg beam BD shown in Fig.17–13a is supported by two rods
having negligible mass. Determine the force developed in each rod if
at the instant ,

SOLUTION
Free-Body Diagram. The beam moves with curvilinear translation
since all points on the beam move along circular paths, each path
having the same radius of 0.5 m. Using normal and tangential
coordinates, the free-body diagram for the beam is shown in
Fig. 17–13b. Because of the translation, G has the same motion as the
pin at B, which is connected to both the rod and the beam. Note that
the tangential component of acceleration acts downward to the left
due to the clockwise direction of , Fig. 17–13c. Furthermore, the
normal component of acceleration is always directed toward the
center of curvature (toward point A for rod AB). Since the angular
velocity of AB is when then

The three unknowns are and The directions of and
have been established, and are indicated on the coordinate axes.1aG2t

1aG2n1aG2t .TD ,TB ,

1aG2n = v2r = 16 rad>s2210.5 m2 = 18 m>s2

u = 30°,6 rad>s

A

v = 6 rad>s.u = 30°
u � 30�

0.5 m G

A C

DB
0.4 m 0.4 m

(a)

V

G

0.4 m 0.4 m

(b)

981 N

30�30� 30�TB TDn

t

(aG)t

(aG)n

0.5 m

A

B

an

at

(c)

v � 6 rad/s
A

Fig. 17–13

Equations of Motion.

(1)

(2)

a (3)

Simultaneous solution of these three equations gives

Ans.

NOTE: It is also possible to apply the equations of motion along
horizontal and vertical x, y axes, but the solution becomes more involved.

1aG2t = 4.905 m>s2

TB = TD = 1.32 kN

-1TB cos 30°210.4 m2 + 1TD cos 30°210.4 m2 = 0+©MG = 0;

981 sin 30° = 100 kg1aG2t+b©Ft = m1aG2t ;
TB + TD - 981 cos 30° N = 100 kg118 m>s22+a©Fn = m1aG2n ;
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FUNDAMENTAL PROBLEMS

F17–4. Determine the maximum acceleration of the truck
without causing the assembly to move relative to the truck.
Also what is the corresponding normal reaction on legs

? The table has a mass center at and the
coefficient of static friction between the legs of the table
and the bed of the truck is ms = 0.2.

G100-kgA and B

F17–2. If the 80-kg cabinet is allowed to roll down the
inclined plane, determine the acceleration of the cabinet
and the normal reactions on the pair of rollers at 
that have negligible mass.

A and B

F17–1. The cart and its load have a total mass of 100 kg.
Determine the acceleration of the cart and the normal
reactions on the pair of wheels at Neglect the
mass of the wheels.

A and B.

F17–5. At the instant shown both rods of negligible mass
swing with a counterclockwise angular velocity of

while the bar is subjected to the 
horizontal force. Determine the tension developed in the
rods and the angular acceleration of the rods at this instant.

100-N50-kgv = 5 rad>s,

F17–3. The link is pinned to a moving frame at 
and held in a vertical position by means of a string 
which can support a maximum tension of Determine
the maximum acceleration of the frame without breaking
the string. What are the corresponding components of
reaction at the pin A? 

10 lb.
BC
AAB20-lb

F17–6. At the instant shown, link rotates with an
angular velocity of If it is subjected to a couple
moment determine the force developed in
link the horizontal and vertical component of reaction
on pin and the angular acceleration of link at this
instant. The block has a mass of and center of mass at

Neglect the mass of links and CD.ABG.
50 kg

CDD,
AB,
M = 450 N # m,

v = 6 rad>s.
CD

F17–10.6 m

0.5 m

0.4 m0.3 m

1.2 m
G

B A

100 N

3
4

5

1.5 m

A

B
0.5 m

0.5 m

G

15�

3 ft

3 ft

A

B

C

4 ft

a

F17–4

A C

B D100 N

1 m 1 m

1.5 m

G

 v � 5 rad/s

A

CD

B
0.4 m

0.6 m
0.1 m

G

M � 450 N � m

v � 6 rad/s0.4 m

F17–5

F17–6

F17–2

F17–3
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17 0.3 m

30� 30�

a

A C

DB
E G

F H

0.3 m0.4 m

Probs. 17–24/25

3.2 m
1.25 m

0.75 m 0.35 mC

GA B

Prob. 17–26

10 ft10 ft

A

B

C

D

Prob. 17–27

0.4 m

6 m

0.8 m

3 m

BA

30�

T � 400 N

G

Prob. 17–28

PROBLEMS

17–27. When the lifting mechanism is operating, the 400-lb
load is given an upward acceleration of . Determine
the compressive force the load creates in each of the
columns, AB and CD.What is the compressive force in each
of these columns if the load is moving upward at a constant
velocity of 3 ? Assume the columns only support an
axial load.

ft>s

5 ft>s2
*17–24. The 4-Mg uniform canister contains nuclear waste
material encased in concrete. If the mass of the spreader
beam BD is 50 kg, determine the force in each of the links
AB, CD, EF, and GH when the system is lifted with an
acceleration of for a short period of time.

•17–25. The 4-Mg uniform canister contains nuclear waste
material encased in concrete. If the mass of the spreader
beam BD is 50 kg, determine the largest vertical acceleration
a of the system so that each of the links AB and CD are not
subjected to a force greater than 30 kN and links EF and GH
are not subjected to a force greater than 34 kN.

a = 2 m>s2

*17–28. The jet aircraft has a mass of 22 Mg and a center of
mass at G. If a towing cable is attached to the upper portion
of the nose wheel and exerts a force of as shown,
determine the acceleration of the plane and the normal
reactions on the nose wheel and each of the two wing
wheels located at B. Neglect the lifting force of the wings
and the mass of the wheels.

T = 400 N

17–26. The dragster has a mass of 1200 kg and a center of
mass at G. If a braking parachute is attached at C and
provides a horizontal braking force of ,
where is in meters per second, determine the critical speed
the dragster can have upon releasing the parachute, such
that the wheels at B are on the verge of leaving the ground;
i.e., the normal reaction at B is zero. If such a condition
occurs, determine the dragster’s initial deceleration. Neglect
the mass of the wheels and assume the engine is disengaged
so that the wheels are free to roll.

v
F = (1.6v2) N
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G

BA

C D

0.7 m

0.4 m

0.5 m0.75 m

Probs. 17–29/30

0.25 m
0.3 m

B 2.5 m1 m

G

A

Probs. 17–31/32

6 ft 4.75 ft

A B

G
0.75 ft

Probs. 17–33/34

B

G

A 1.25 m
0.75 m

0.35 m

Prob. 17–35

•17–33. At the start of a race, the rear drive wheels B of the
1550-lb car slip on the track. Determine the car’s
acceleration and the normal reaction the track exerts on the
front pair of wheels A and rear pair of wheels B. The
coefficient of kinetic friction is , and the mass
center of the car is at G. The front wheels are free to roll.
Neglect the mass of all the wheels.

17–34. Determine the maximum acceleration that can be
achieved by the car without having the front wheels A leave
the track or the rear drive wheels B slip on the track. The
coefficient of static friction is .The car’s mass center
is at G, and the front wheels are free to roll. Neglect the
mass of all the wheels.

ms = 0.9

mk = 0.7

17–31. The dragster has a mass of 1500 kg and a center of
mass at G. If the coefficient of kinetic friction between the
rear wheels and the pavement is , determine if it is
possible for the driver to lift the front wheels, A, off the
ground while the rear drive wheels are slipping. Neglect the
mass of the wheels and assume that the front wheels are
free to roll.

*17–32. The dragster has a mass of 1500 kg and a center of
mass at G. If no slipping occurs, determine the frictional
force which must be developed at each of the rear drive
wheels B in order to create an acceleration of .
What are the normal reactions of each wheel on the
ground? Neglect the mass of the wheels and assume that
the front wheels are free to roll.

a = 6 m>s2
FB

mk = 0.6

•17–29. The lift truck has a mass of 70 kg and mass center
at G. If it lifts the 120-kg spool with an acceleration of

, determine the reactions on each of the four wheels.
The loading is symmetric. Neglect the mass of the movable
arm CD.

17–30. The lift truck has a mass of 70 kg and mass center at
G. Determine the largest upward acceleration of the 120-kg
spool so that no reaction on the wheels exceeds 600 N.

3 m>s2

17–35. The sports car has a mass of 1.5 Mg and a center of
mass at G. Determine the shortest time it takes for it to
reach a speed of 80 , starting from rest, if the engine
only drives the rear wheels, whereas the front wheels are
free rolling. The coefficient of static friction between the
wheels and the road is . Neglect the mass of the
wheels for the calculation. If driving power could be
supplied to all four wheels, what would be the shortest time
for the car to reach a speed of 80 ?km>h

ms = 0.2

km>h
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17–39. The forklift and operator have a combined weight of
10 000 lb and center of mass at G. If the forklift is used to lift
the 2000-lb concrete pipe, determine the maximum vertical
acceleration it can give to the pipe so that it does not tip
forward on its front wheels.

*17–40. The forklift and operator have a combined weight
of 10 000 lb and center of mass at G. If the forklift is used
to lift the 2000-lb concrete pipe, determine the normal
reactions on each of its four wheels if the pipe is given an
upward acceleration of .4 ft>s2

17–38. Each uniform box on the stack of four boxes has a
weight of 8 lb. The stack is being transported on the dolly,
which has a weight of 30 lb. Determine the maximum force F
which the woman can exert on the handle in the direction
shown so that no box on the stack will tip or slip. The
coefficient of the static friction at all points of contact is

.The dolly wheels are free to roll. Neglect their mass.ms = 0.5

*17–36. The forklift travels forward with a constant speed
of . Determine the shortest stopping distance without
causing any of the wheels to leave the ground. The forklift
has a weight of 2000 lb with center of gravity at , and the
load weighs 900 lb with center of gravity at . Neglect the
weight of the wheels.

•17–37. If the forklift’s rear wheels supply a combined traction
force of , determine its acceleration and the
normal reactions on the pairs of rear wheels and front wheels.
The forklift has a weight of 2000 lb, with center of gravity at

, and the load weighs 900 lb, with center of gravity at .The
front wheels are free to roll. Neglect the weight of the wheels.

G2G1

FA = 300 lb

G2

G1

9 ft>s

•17–41. The car, having a mass of 1.40 Mg and mass center
at , pulls a loaded trailer having a mass of 0.8 Mg and
mass center at . Determine the normal reactions on both
the car’s front and rear wheels and the trailer’s wheels if the
driver applies the car’s rear brakes C and causes the car to
skid. Take and assume the hitch at A is a pin or
ball-and-socket joint.The wheels at B and D are free to roll.
Neglect their mass and the mass of the driver.

mC = 0.4

Gt

Gc

1.5 ft
3.5 ft

3.25 ft2 ft

4.25 ft

A B

G1

G2

Probs. 17–36/37

1.5 ft

2 ft

F

1.5 ft

1.5 ft

1.5 ft

30�

Prob. 17–38

5 ft 4 ft 6 ft

G

A B

Probs. 17–39/40

2 m

0.4 m
A

B C
1 m 1.5 m 2 m

D

Gt

1.25 m

Gc
0.75 m

Prob. 17–41
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*17–44. The handcart has a mass of 200 kg and center of
mass at G. Determine the normal reactions at each of the two
wheels at A and at B if a force of is applied to the
handle. Neglect the mass of the wheels.

•17–45. The handcart has a mass of 200 kg and center of
mass at G. Determine the largest magnitude of force P that
can be applied to the handle so that the wheels at A or B
continue to maintain contact with the ground. Neglect the
mass of the wheels.

P = 50 N

17–43. Arm BDE of the industrial robot is activated by
applying the torque of to link CD. Determine
the reactions at pins B and D when the links are in the
position shown and have an angular velocity of Arm
BDE has a mass of 10 kg with center of mass at . The
container held in its grip at E has a mass of 12 kg with center
of mass at . Neglect the mass of links AB and CD.G2

G1

2 rad>s.

M = 50  N # m

17–42. The uniform crate has a mass of 50 kg and rests on
the cart having an inclined surface. Determine the smallest
acceleration that will cause the crate either to tip or slip
relative to the cart. What is the magnitude of this
acceleration? The coefficient of static friction between the
crate and the cart is .ms = 0.5

17–46. The jet aircraft is propelled by four engines to
increase its speed uniformly from rest to 100 m/s in a distance
of 500 m. Determine the thrust T developed by each engine
and the normal reaction on the nose wheel A. The aircraft’s
total mass is 150 Mg and the mass center is at point G.
Neglect air and rolling resistance and the effect of lift.

15�

1 m

0.6 m

F

Prob. 17–42

0.3 m 0.4 m0.2 m

0.2 m

0.5 m

60�

A B

G

P

Probs. 17–44/45

30 m
7.5 m

9 m

T

T
5 m4 m

A B

G

Prob. 17–46

0.220 m

0.600 m
M � 50 N � m

v � 2 rad/s

B D

CA

0.365 m 0.735 m

E

G1 G2 

Prob. 17–43
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17–51. The trailer with its load has a mass of 150 kg and a
center of mass at G. If it is subjected to a horizontal force of

, determine the trailer’s acceleration and the
normal force on the pair of wheels at A and at B. The
wheels are free to roll and have negligible mass.

P = 600 N

•17–49. The snowmobile has a weight of 250 lb, centered at
, while the rider has a weight of 150 lb, centered at . If the

acceleration is , determine the maximum height h
of of the rider so that the snowmobile’s front skid does not
lift off the ground. Also, what are the traction (horizontal)
force and normal reaction under the rear tracks at A?

17–50. The snowmobile has a weight of 250 lb, centered at
, while the rider has a weight of 150 lb, centered at . If

, determine the snowmobile’s maximum permissible
acceleration a so that its front skid does not lift off the
ground. Also, find the traction (horizontal) force and the
normal reaction under the rear tracks at A.

h = 3 ft
G2G1

G2

a = 20 ft>s2
G2G1

17–47. The 1-Mg forklift is used to raise the 750-kg crate
with a constant acceleration of . Determine the
reaction exerted by the ground on the pairs of wheels at A
and at B. The centers of mass for the forklift and the crate
are located at and , respectively.

*17–48. Determine the greatest acceleration with which
the 1-Mg forklift can raise the 750-kg crate, without causing
the wheels at B to leave the ground. The centers of mass for
the forklift and the crate are located at and ,
respectively.

G2G1

G2G1

2 m>s2

*17–52. The 50-kg uniform crate rests on the platform for
which the coefficient of static friction is . If the
supporting links have an angular velocity ,
determine the greatest angular acceleration they can have
so that the crate does not slip or tip at the instant .

•17–53. The 50-kg uniform crate rests on the platform for
which the coefficient of static friction is . If at the
instant the supporting links have an angular velocity

and angular acceleration ,
determine the frictional force on the crate.

a = 0.5 rad>s2v = 1  rad>s
u = 30°

ms = 0.5

u = 30°
a

v = 1 rad>s
ms = 0.5

0.9 m 1 m
0.4 m

0.5 m

A B

G1
G2

0.4 m

Probs. 17–47/48

a

1.5 ft

0.5 ft

G1

G2

1 ft

h

A

Probs. 17–49/50

1.25 m

0.75 m
1.25 m

0.25 m0.25 m 0.5 m

G

B A

P � 600 N

Prob. 17–51

C 1.5 m

4 m

u

v

a u

4 m

0.5 m

 � 1 rad/s

Probs. 17–52/53
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17.4 Equations of Motion: Rotation
about a Fixed Axis

Consider the rigid body (or slab) shown in Fig. 17–14a, which is constrained
to rotate in the vertical plane about a fixed axis perpendicular to the page
and passing through the pin at O. The angular velocity and angular
acceleration are caused by the external force and couple moment system
acting on the body. Because the body’s center of mass G moves around a
circular path, the acceleration of this point is best represented by its
tangential and normal components.The tangential component of acceleration
has a magnitude of and must act in a direction which is
consistent with the body’s angular acceleration The magnitude of the
normal component of acceleration is This component is
always directed from point G to O, regardless of the rotational sense of V.

1aG2n = v2rG .
A.

1aG2t = arG

17–55. A uniform plate has a weight of 50 lb. Link AB is
subjected to a couple moment of and has a
clockwise angular velocity of at the instant .
Determine the force developed in link CD and the tangential
component of the acceleration of the plate’s mass center at
this instant. Neglect the mass of links AB and CD.

u = 30°2 rad>s
M = 10 lb # ft

17–54. If the hydraulic cylinder BE exerts a vertical force
of on the platform, determine the force
developed in links AB and CD at the instant . The
platform is at rest when . Neglect the mass of the
links and the platform. The 200-kg crate does not slip on
the platform.

u = 45°
u = 90°

F = 1.5 kN

3 m

3 m

1 m

2 m

F

G

C

A

B

D

E

u

Prob. 17–54

1.5 ft

2 ft

1 ft

C

D

B

A

u � 30�

M � 10 lb � ft 

Prob. 17–55

G

A

V

(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

O

Fig. 17–14
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The free-body and kinetic diagrams for the body are shown in
Fig. 17–14b. The two components and shown on the
kinetic diagram, are associated with the tangential and normal components
of acceleration of the body’s mass center. The vector acts in the same
direction as and has a magnitude of where is the body’s moment
of inertia calculated about an axis which is perpendicular to the page and
passes through G. From the derivation given in Sec. 17.2, the equations of
motion which apply to the body can be written in the form

(17–14)

The moment equation can be replaced by a moment summation about
any arbitrary point P on or off the body provided one accounts for the
moments produced by and about the
point. Often it is convenient to sum moments about the pin at O in order
to eliminate the unknown force From the kinetic diagram,
Fig. 17–14b, this requires

a (17–15)

Note that the moment of is not included here since the line of
action of this vector passes through O. Substituting we may
rewrite the above equation as a From the+©MO = 1IG + mrG2 2a.

1aG2t = rGa,
m1aG2n

©MO = rGm1aG2t + IGa+©MO = ©1mk2O ;

FO .

m1aG2nm1aG2t ,IGA,©1mk2P

©Fn = m1aG2n = mv2rG
©Ft = m1aG2t = marG

©MG = IGa

IGIGa,A

IGA

m1aG2n ,m1aG2t

* The result can also be obtained directly from Eq. 17–6 by selecting point
P to coincide with O, realizing that 1aP2x = 1aP2y = 0.

©MO = IOa

O

G

M1

M2

F4

F3

F2

F1

W

FO

=

(b)

rGO

G

m(aG)t

m(aG)n

IGA

Fig. 17–14 (cont.)

O

G
(aG)t

(aG)n
rG

M1

M2

F4

F3

F2

F1

(a)

A

V

parallel-axis theorem, and therefore the term in
parentheses represents the moment of inertia of the body about the fixed
axis of rotation passing through O.*  Consequently, we can write the
three equations of motion for the body as

(17–16)

When using these equations, remember that accounts for the
“moment” of both and about point O, Fig. 17–14b. In other
words, as indicated by Eqs. 17–15 and 17–16.©MO = ©1mk2O = IOa,

IGAm1aG2t
“IOa”

©Fn = m1aG2n = mv2rG
©Ft = m1aG2t = marG

©MO = IOa

IO = IG + md2,
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Procedure for Analysis

Kinetic problems which involve the rotation of a body about a fixed
axis can be solved using the following procedure.

Free-Body Diagram.

• Establish the inertial n, t coordinate system and specify the
direction and sense of the accelerations and and the
angular acceleration of the body. Recall that must act in a
direction which is in accordance with the rotational sense of 
whereas always acts toward the axis of rotation, point O.

• Draw the free-body diagram to account for all the external forces
and couple moments that act on the body.

• Determine the moment of inertia or 

• Identify the unknowns in the problem.

• If it is decided that the rotational equation of motion
is to be used, i.e., P is a point other than G or O,

then consider drawing the kinetic diagram in order to help
“visualize” the “moments” developed by the components

and when writing the terms for the moment
sum

Equations of Motion.

• Apply the three equations of motion in accordance with the
established sign convention.

• If moments are summed about the body’s mass center, G, then
since and create no moment about G.

• If moments are summed about the pin support O on the axis of
rotation, then creates no moment about O, and it can be
shown that 

Kinematics.

• Use kinematics if a complete solution cannot be obtained strictly
from the equations of motion.

• If the angular acceleration is variable, use

• If the angular acceleration is constant, use

v2 = v0
2 + 2ac1u - u02

u = u0 + v0t + 1
2act

2

v = v0 + act

a =
dv

dt
a du = v dv v =

du

dt

©MO = IOa.
1maG2n

1maG2n1maG2t©MG = IGa,

©1mk2P .
IGAm1aG2t ,m1aG2n ,

©MP = ©1mk2P

IO .IG

1aG2n
A,

1aG2tA

1aG2t1aG2n

Oy

Ox

M

W

T

=

G

G

O

O

IGA

m(aG)n

m(aG)t

d

The crank on the oil-pumping rig undergoes
rotation about a fixed axis which is caused by
a driving torque M of the motor.The loadings
shown on the free-body diagram cause the
effects shown on the kinetic diagram. If
moments are summed about the mass center,
G, then However, if moments
are summed about point O, noting
that then a

m1aG2n102 = 1IG + md22a = IOa.m1aG2td +
+©MO = IGa +1aG2t = ad,

©MG = IGa.
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EXAMPLE 17.9

The unbalanced 50-lb flywheel shown in Fig. 17–15a has a radius of
gyration of about an axis passing through its mass center
G. If it is released from rest, determine the horizontal and vertical
components of reaction at the pin O.

SOLUTION
Free-Body and Kinetic Diagrams. Since G moves in a circular
path, it will have both normal and tangential components of
acceleration. Also, since which is caused by the flywheel’s weight,
acts clockwise, the tangential component of acceleration must act
downward. Why? Since only and are
shown on the kinematic diagram in Fig. 17–15b. Here, the moment of
inertia about G is

The three unknowns are and 

Equations of Motion.

Ans.

(1)

c

Solving,

Ans.

Moments can also be summed about point O in order to eliminate 
and and thereby obtain a direct solution for Fig. 17–15b.This can
be done in one of two ways.

c

(2)

If is applied, then by the parallel-axis theorem the
moment of inertia of the flywheel about O is

Hence,

c

which is the same as Eq. 2. Solving for and substituting into Eq. 1
yields the answer for obtained previously.Ot

a

150 lb210.5 ft2 = 10.9472 slug # ft22a+©MO = IOa;

IO = IG + mrG2 = 0.559 + a 50
32.2
b10.522 = 0.9472 slug # ft2

©MO = IOa
= 0.9472a50 lb10.5 ft2

10.5590 slug # ft22a + c a 50 lb

32.2 ft>s2 ba10.5 ft2 d10.5 ft2150 lb210.5 ft2 =

+©MO = ©1mk2O ;

A,Ot
On

a = 26.4 rad>s2 Ot = 29.5 lb

Ot10.5 ft2 = 10.5590 slug # ft22a+©MG = IGa;

-Ot + 50 lb = a 50 lb

32.2 ft>s2 b1a210.5 ft2+ T©Ft = marG ;

On = 0;+ ©Fn = mv2rG ;

a.Ot ,On ,

IG = mkG2 = 150 lb>32.2 ft>s2210.6 ft22 = 0.559 slug # ft2

IGam1aG2t = marGv = 0,

a,

kG = 0.6 ft

0.5 ft

G

(a)

O

n

t

(b)

=

0.5 ft

O
GOn

Ot 50 lb

O G

rG

IG�

m�rG

Fig. 17–15
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At the instant shown in Fig. 17–16a, the 20-kg slender rod has an
angular velocity of Determine the angular acceleration
and the horizontal and vertical components of reaction of the pin on
the rod at this instant.

v = 5 rad>s.

v � 5 rad/s

3 m

60 N � m

(a)

O

IGA

O G

O G

1.5 m

On

Ot

60 N � m

20(9.81) N

(b)

mv2rG

marG

rG

=
Fig. 17–16

SOLUTION
Free-Body and Kinetic Diagrams. Fig. 17–16b. As shown on the
kinetic diagram, point G moves around a circular path and so it has
two components of acceleration. It is important that the tangential
component act downward since it must be in accordance
with the rotational sense of . The three unknowns are and 

Equation of Motion.

c

Solving

Ans.

A more direct solution to this problem would be to sum moments
about point O to eliminate and and obtain a direct solution for

Here,

c

Ans.

Also, since for a slender rod, we can apply

c

Ans.

NOTE: By comparison, the last equation provides the simplest solution
for and does not require use of the kinetic diagram.a

a = 5.90 rad>s2

60 N # m + 2019.812 N11.5 m2 = C13120 kg213 m22 Da+©MO = IOa;

IO = 1
3ml

2

a = 5.90 rad>s2

C 1
12120 kg213 m22 Da + [20 kg1a211.5 m2]11.5 m2

60 N # m + 2019.812 N11.5 m2 =+©MO = ©1mk2O ;

a.
OtOn

On = 750 N Ot = 19.05 N a = 5.90 rad>s2

Ot11.5 m2 + 60 N # m = C 1
12120 kg213 m22 Da+©MG = IGa;

-Ot + 2019.812N = 120 kg21a211.5 m2+ T©Ft = marG ;

On = 120 kg215 rad>s2211.5 m2;+ ©Fn = mv2rG ;

a.Ot ,On ,A

at = arG
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EXAMPLE 17.11

The drum shown in Fig. 17–17a has a mass of 60 kg and a radius of
gyration A cord of negligible mass is wrapped around the
periphery of the drum and attached to a block having a mass of 20 kg. If
the block is released, determine the drum’s angular acceleration.

SOLUTION I 

Free-Body Diagram. Here we will consider the drum and block
separately, Fig. 17–17b. Assuming the block accelerates downward at
a, it creates a counterclockwise angular acceleration of the drum.
The moment of inertia of the drum is

There are five unknowns, namely T, a, and 

Equations of Motion. Applying the translational equations of
motion and to the drum is of no
consequence to the solution, since these equations involve the
unknowns and Thus, for the drum and block, respectively,

a (1)

(2)

Kinematics. Since the point of contact A between the cord and
drum has a tangential component of acceleration a, Fig. 17–17a, then

a (3)

Solving the above equations,

d Ans.

SOLUTION II

Free-Body and Kinetic Diagrams. The cable tension T can be
eliminated from the analysis by considering the drum and block as a
single system, Fig. 17–17c. The kinetic diagram is shown since
moments will be summed about point O.

Equations of Motion. Using Eq. 3 and applying the moment
equation about O to eliminate the unknowns and we have

a

Ans.

NOTE: If the block were removed and a force of 20(9.81) N were
applied to the cord, show that . This value is larger
since the block has an inertia, or resistance to acceleration.

a = 20.9 rad>s2

a = 11.3 rad>s2

13.75 kg # m22a + [20 kg1a 0.4 m2]10.4 m2
[2019.812N] 10.4 m2 =+©MO = ©1mk2O ;

Oy ,Ox

 a = 11.3 rad>s2

 a = 4.52 m>s2 T = 106 N

a = a10.4 m2+a = ar;

-2019.812N + T = -(20 kg)a+ c©Fy = m1aG2y ;
T10.4 m2 = 13.75 kg # m22a+©MO = IOa;

Oy .Ox

©Fy = m1aG2y©Fx = m1aG2x

a.Oy ,Ox ,

IO = mkO2 = 160 kg210.25 m22 = 3.75 kg # m2

A

kO = 0.25 m.0.4 m
O

(a)

A

0.4 m
O

(b)

Ox

Oy

60 (9.81) N

20 (9.81) N

T

T y

x

a

A

0.4 m

(c)

Ox

Oy

60 (9.81) N

O
0.4 m O=

20(9.81) N (20 kg)a

IOaa

Fig. 17–17
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EXAMPLE 17.12

The slender rod shown in Fig. 17–18a has a mass m and length l and is
released from rest when Determine the horizontal and
vertical components of force which the pin at A exerts on the rod at
the instant 

SOLUTION
Free-Body Diagram. The free-body diagram for the rod in the
general position is shown in Fig. 17–18b. For convenience, the force
components at A are shown acting in the n and t directions. Note that

acts clockwise and so acts in the + t direction.
The moment of inertia of the rod about point A is

Equations of Motion. Moments will be summed about A in order
to eliminate .

(1)

(2)

c (3)

Kinematics. For a given angle there are four unknowns in the
above three equations: and As shown by Eq. 3, is not
constant; rather, it depends on the position of the rod. The necessary
fourth equation is obtained using kinematics, where and can be
related to by the equation

(c (4)

Note that the positive clockwise direction for this equation agrees with
that of Eq. 3. This is important since we are seeking a simultaneous
solution.

In order to solve for at eliminate from Eqs. 3 and 4,
which yields

Since at we have

Substituting this value into Eq. 1 with and solving Eqs. 1 to 3
yields

Ans.

NOTE: If is used, one must account for the
moments of and about A.m1aG2tIGA

©MA = ©1mk2A
An = 2.5mgAt = 0

a = 0

u = 90°

v2 = 3g>lL

v

0
v dv = 11.5g>l2

L

90°

0°
cos u du

u = 0°,v = 0

v dv = 11.5g>l2 cos u du

au = 90°,v

v dv = a du+2
u

va

u

aa.v,At ,An ,
u

mg cos u1l>22 = A13ml2 Ba+©MA = IAa;

At + mg cos u = ma1l>22+b©Ft = marG ;

An - mg sin u = mv21l>22+a©Fn = mv2rG ;

An and At

IA = 1
3ml

2.
(aG)tA

u

u = 90°.

u = 0°.

l

A

(a)

u

(b)

(aG)n

(aG)t

n

t

l–
2

A

An

At

mg

G

u

u

A

Fig. 17–18
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FUNDAMENTAL PROBLEMS

0.6 m

O

P � 100 N

F17–7

O

0.6 m 0.3 m

F17–11

A

O

P � 300 N

0.8 m

0.6 m 0.3 m

 v � 6 rad/s

F17–12

O

0.3 m
M � (9t)N � m

F17–8

O

0.3 m 0.6 m

M � 60 N � m

F17–9

0.3 m

O

P � 50 N
3

4

5

F17–10

F17–10. At the instant shown, the disk has a
counterclockwise angular velocity of 
Determine the tangential and normal components of
reaction of the pin on the disk and the angular
acceleration of the disk at this instant.

O

v = 10 rad>s.
30-kg

F17–9. At the instant shown, the uniform slender
rod has a counterclockwise angular velocity of 
Determine the tangential and normal components of
reaction of pin on the rod and the angular acceleration of
the rod at this instant.

O

v = 6 rad>s.
30-kg

F17–7. The wheel has a radius of gyration about its
center of If the wheel starts from rest,
determine its angular velocity in t = 3 s.

kO = 500 mm.O
100-kg

F17–12. The uniform slender rod is being pulled by
the cord that passes over the small smooth peg at If the
rod has an angular velocity of at the instant
shown, determine the tangential and normal components of
reaction at the pin and the angular acceleration of the rod.O

v = 6 rad>s
A.

30-kg

F17–8. The disk is subjected to the couple moment
of where is in seconds. Determine the
angular velocity of the disk when starting from rest.t = 4 s

tM = (9t) N # m,
50-kg

F17–11. The uniform slender rod has a mass of 
Determine the horizontal and vertical components of
reaction at the pin , and the angular acceleration of the
rod just after the cord is cut.

O

15 kg.
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PROBLEMS

17–58. The single blade PB of the fan has a mass of 2 kg
and a moment of inertia about an axis
passing through its center of mass G. If the blade is
subjected to an angular acceleration , and has
an angular velocity when it is in the vertical
position shown, determine the internal normal force N,
shear force V, and bending moment M, which the hub
exerts on the blade at point P.

v = 6 rad>s
a = 5 rad>s2

IG = 0.18 kg # m2

•17–57. Cable is unwound from a spool supported on small
rollers at A and B by exerting a force of on the
cable in the direction shown. Compute the time needed to
unravel 5 m of cable from the spool if the spool and cable
have a total mass of 600 kg and a centroidal radius of
gyration of . For the calculation, neglect the
mass of the cable being unwound and the mass of the rollers
at A and B. The rollers turn with no friction.

kO = 1.2 m

T = 300 N

*17–56. The four fan blades have a total mass of 2 kg and
moment of inertia about an axis passing
through the fan’s center O. If the fan is subjected to a
moment of , where t is in seconds,
determine its angular velocity when starting
from rest.

t = 4 s
M = 3(1 - e-0.2t) N # m

IO = 0.18 kg # m2

17–59. The uniform spool is supported on small rollers at
A and B. Determine the constant force P that must be
applied to the cable in order to unwind 8 m of cable in 4 s
starting from rest. Also calculate the normal forces on the
spool at A and B during this time. The spool has a mass of 
60 kg and a radius of gyration about of . For
the calculation neglect the mass of the cable and the mass of
the rollers at A and B.

kO = 0.65 mO

30�

1 m

O

T � 300 N

0.8 m

A B

1.5 m

Prob. 17–57

300 mm

75 mm

P

B

v
a

G

� 6 rad/s
� 5 rad/s2

Prob. 17–58

MO

Prob. 17–56

15� 15�

O

A B

0.8 m

1 m

P

Prob. 17–59



434 CH A P T E R 17 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  FO R C E A N D AC C E L E R AT I O N

17

17–63. The 4-kg slender rod is supported horizontally by a
spring at A and a cord at B. Determine the angular
acceleration of the rod and the acceleration of the rod’s
mass center at the instant the cord at B is cut. Hint: The
stiffness of the spring is not needed for the calculation.

17–62. The pendulum consists of a 30-lb sphere and a 10-lb
slender rod. Compute the reaction at the pin O just after the
cord AB is cut.

*17–60. A motor supplies a constant torque 
to a 50-mm-diameter shaft O connected to the center of the
30-kg flywheel. The resultant bearing friction F, which the
bearing exerts on the shaft, acts tangent to the shaft and has
a magnitude of 50 N. Determine how long the torque must
be applied to the shaft to increase the flywheel’s angular
velocity from to The flywheel has a radius
of gyration about its center .

•17–61. If the motor in Prob. 17–60 is disengaged from the
shaft once the flywheel is rotating at 15 rad/s, so that ,
determine how long it will take before the resultant bearing
frictional force stops the flywheel from rotating.F = 50 N

M = 0

OkO = 0.15 m
15 rad>s.4 rad>s

M = 2 N # m

*17–64. The passengers, the gondola, and its swing frame
have a total mass of 50 Mg, a mass center at G, and a radius
of gyration . Additionally, the 3-Mg steel block
at A can be considered as a point of concentrated mass.
Determine the horizontal and vertical components of
reaction at pin B if the gondola swings freely at 
when it reaches its lowest point as shown. Also, what is the
gondola’s angular acceleration at this instant?

•17–65. The passengers, the gondola, and its swing frame
have a total mass of 50 Mg, a mass center at G, and a radius
of gyration . Additionally, the 3-Mg steel block
at A can be considered as a point of concentrated mass.
Determine the angle to which the gondola will swing
before it stops momentarily, if it has an angular velocity of

at its lowest point.v = 1 rad>s
u

kB = 3.5 m

v = 1 rad>s

kB = 3.5 m
25 mm O

F

M

Probs. 17–60/61

2 ft

O

A

B

1 ft

Prob. 17–62

5 m

3 m

B

A

v

G

Probs. 17–64/65

2 m
B

A

Prob. 17–63
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rGP

rOG

m(aG)n

G
IG

m(aG)t

O

P

a

a

Prob. 17–66

4 ft

P

A

rP

F

Prob. 17–67

*17–68. The 150-kg wheel has a radius of gyration about
its center of mass O of . If it rotates
counterclockwise with an angular velocity of 

at the instant the tensile forces and
are applied to the brake band at A and B,

determine the time needed to stop the wheel.

•17–69. The 150-kg wheel has a radius of gyration about
its center of mass O of . If it rotates
counterclockwise with an angular velocity of 

and the tensile force applied to the brake band at A is
, determine the tensile force in the band at

B so that the wheel stops in 50 revolutions after and 
are applied.

TBTA
TBTA = 2000 N

min
v = 1200 rev>

kO = 250 mm

TB = 1000 N
TA = 2000 Nmin
v = 1200 rev>

kO = 250 mm

17–67. Determine the position of the center of
percussion P of the 10-lb slender bar. (See Prob. 17–66.)
What is the horizontal component of force that the pin at 
exerts on the bar when it is struck at P with a force of

?F = 20 lb

A

rP

17–66. The kinetic diagram representing the general
rotational motion of a rigid body about a fixed axis passing
through O is shown in the figure. Show that may be
eliminated by moving the vectors and to
point P, located a distance from the center of
mass G of the body. Here represents the radius of
gyration of the body about an axis passing through G. The
point P is called the center of percussion of the body.

kG

rGP = k2
G>rOG

m(aG)nm(aG)t
IGA

17–70. The 100-lb uniform rod is at rest in a vertical
position when the cord attached to it at B is subjected to a
force of . Determine the rod’s initial angular
acceleration and the magnitude of the reactive force that
pin A exerts on the rod. Neglect the size of the smooth
peg at C.

P = 50 lb

A

B

300 mm
v � 1200 rev/min

O

TA

TB

Probs. 17–68/69

A

B

C

P � 50 lb
3 ft

4 ft

3 ft

Prob. 17–70



k
A

1.5 m 1.5 m

800 mm

k � 150 N/m

B

A

vv
u
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17–74. The uniform slender rod has a mass of 9 kg. If the
spring is unstretched when , determine the magnitude
of the reactive force exerted  on the rod by pin A when

, if at this instant . The spring has a
stiffness of and always remains in the
horizontal position.

k = 150 N>m
v = 6 rad>su = 45°

u = 0°

•17–73. The bar has a mass m and length l. If it is released
from rest from the position determine its angular
acceleration and the horizontal and vertical components of
reaction at the pin O.

u = 30°,

17–71. Wheels A and B have weights of 150 lb and 100 lb,
respectively. Initially, wheel A rotates clockwise with a
constant angular velocity of  and wheel B is
at rest. If A is brought into contact with B, determine the
time required for both wheels to attain the same angular
velocity. The coefficient of kinetic friction between the two
wheels is and the radii of gyration of A and B
about their respective centers of mass are and

. Neglect the weight of  link AC.

*17–72. Initially, wheel A rotates clockwise with a constant
angular velocity of . If A is brought into
contact with B, which is held fixed, determine the number
of revolutions before wheel A is brought to a stop. The
coefficient of kinetic friction between the two wheels is

, and the radius of gyration of A about its mass
center is . Neglect the weight of link AC.kA = 1 ft
mk = 0.3

v = 100 rad>s

kB = 0.75 ft
kA = 1 ft

mk = 0.3

v = 100 rad>s

17–75. Determine the angular acceleration of the 25-kg
diving board and the horizontal and vertical components of
reaction at the pin A the instant the man jumps off. Assume
that the board is uniform and rigid, and that at the instant
he jumps off the spring is compressed a maximum amount
of 200 mm, and the board is horizontal. Take
k = 7 kN>m.

v = 0,

Prob. 17–74

6 ft

1.25 ft

1 ft

BC

A
v

30�

Prob. 17–71/72

L

A

u

Prob. 17–76

*17–76. The slender rod of length L and mass m is released
from rest when . Determine as a function of the
normal and the frictional forces which are exerted by the
ledge on the rod at A as it falls downward. At what angle 
does the rod begin to slip if the coefficient of static friction
at A is ?m

u

uu = 0°

O

l

30��u

Prob 17.73

Prob 17–75
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P � 200 N

O

r

10 mm

Prob. 17–80

C

�

B
A

60�

150 mm

Prob. 17–81

A B

C

0.6 m 0.6 m

0.75 m

1 m

G

vv

u

Probs. 17–77/78

3 ft

3 ft

A

B

C

Prob. 17–79

*17–80. The hose is wrapped in a spiral on the reel and is
pulled off  the reel by a horizontal force of .
Determine the angular acceleration of the reel after it has
turned 2 revolutions. Initially, the radius is .The
hose is 15 m long and has a mass per unit length of .
Treat the wound-up hose as a disk.

10 kg>m
r = 500 mm

P = 200 N

17–79. If the support at B is suddenly removed, determine
the initial horizontal and vertical components of reaction
that the pin A exerts on the rod ACB. Segments AC and CB
each have a weight of 10 lb.

•17–77. The 100-kg pendulum has a center of mass at G
and a radius of gyration about G of .
Determine the horizontal and vertical components of
reaction on the beam by the pin A and the normal reaction
of the roller B at the instant when the pendulum is
rotating at . Neglect the weight of the beam and
the support.

17–78. The 100-kg pendulum has a center of mass at G and a
radius of gyration about G of . Determine the
horizontal and vertical components of reaction on the beam
by the pin A and the normal reaction of the roller B at the
instant when the pendulum is rotating at .
Neglect the weight of the beam and the support.

v = 4 rad>su = 0°

kG = 250 mm

v = 8 rad>s
u = 90°

kG = 250 mm

•17–81. The disk has a mass of 20 kg and is originally
spinning at the end of the strut with an angular velocity of

. If it is then placed against the wall, where the
coefficient of kinetic friction is , determine the
time required for the motion to stop. What is the force in
strut BC during this time?

mk = 0.3
v = 60 rad>s
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B

C

F � 300 N

6 m

A

u � 60�

Prob. 17–82

O

3 ft

3 ft

20 lb

2 ft

F

Prob. 17–83

*17–84. The 50-kg flywheel has a radius of gyration about
its center of mass of . It rotates with a
constant angular velocity of before the brake
is applied. If the coefficient of kinetic friction between the
brake pad B and the wheel’s rim is , and a force of

is applied to the braking mechanism’s handle,
determine the time required to stop the wheel.

•17–85. The 50-kg flywheel  has a radius of gyration about
its center of mass of . It rotates with a
constant angular velocity of before the brake
is applied. If the coefficient of kinetic friction between the
brake pad B and the wheel’s rim is , determine the
constant force P that must be applied to the braking
mechanism’s handle in order to stop the wheel in
100 revolutions.

mk = 0.5

1200  rev>min
kO = 250 mm

P = 300 N
mk = 0.5

1200  rev>min
kO = 250 mm

17–83. At the instant shown, two forces act on the 30-lb
slender rod which is pinned at O. Determine the magnitude
of force F and the initial angular acceleration of the rod so
that the horizontal reaction which the pin exerts on the rod
is 5 lb directed to the right.

17–82. The 50-kg uniform beam (slender rod) is lying on
the floor when the man exerts a force of on the
rope, which passes over a small smooth peg at C. Determine
the initial angular acceleration of the beam. Also find the
horizontal and vertical reactions on the beam at A
(considered to be a pin) at this instant.

F = 300 N

17–86. The 5-kg cylinder is initially at rest when it is placed
in contact with the wall B and the rotor at A. If the rotor
always maintains a constant clockwise angular velocity

, determine the initial angular acceleration of
the cylinder. The coefficient of kinetic friction at the
contacting surfaces B and C is .mk = 0.2

v = 6 rad>s

C

A

vv

125 mm

45�

B

Prob. 17–86

P
1 m

0.2 m

0.5 m

0.3 m
O

B

CA

Probs. 17–84/85
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B

s

A

0.6 ft

Prob. 17–87

A

B

1 ft

2 ft

2 ft

1 ft

 � 30 rad/s

C

E

D

v

Prob. 17–88

•17–89. A 17-kg roll of paper, originally at rest, is
supported by bracket AB. If the roll rests against a wall
where the coefficient of kinetic friction is , and a
constant force of 30 N is applied to the end of the sheet,
determine the tension in the bracket as the paper unwraps,
and the angular acceleration of the roll. For the calculation,
treat the roll as a cylinder.

mC = 0.3

*17–88. Disk D turns with a constant clockwise angular
velocity of 30 . Disk E has a weight of 60 lb and is
initially at rest when it is brought into contact with D.
Determine the time required for disk E to attain the same
angular velocity as disk D. The coefficient of kinetic
friction between the two disks is . Neglect the
weight of bar BC.

mk = 0.3

rad>s

17–87. The drum has a weight of 50 lb and a radius of
gyration . A 35-ft-long chain having a weight of
2 is wrapped around the outer surface of the drum so
that a chain length of is suspended as shown. If the
drum is originally at rest, determine its angular velocity
after the end B has descended . Neglect the
thickness of the chain.

s = 13 ft

s = 3 ft
lb>ft

kA = 0.4 ft

17–90. The cord is wrapped around the inner core of the
spool. If a 5-lb block B is suspended from the cord and
released from rest, determine the spool’s angular velocity
when . Neglect the mass of the cord. The spool has a
weight of 180 lb and the radius of gyration about the axle A
is . Solve the problem in two ways, first by
considering the “system” consisting of the block and spool,
and then by considering the block and spool separately.

kA = 1.25 ft

t = 3 s

C

120 mm

B

aa

A

P � 30 N

60�

12

5

13

Prob. 17–89

B

s

2.75 ft

A1.5 ft

Prob. 17–90
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IGA
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maG

G

M1

M2

F4

F1

F2
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W

y

x
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17.5 Equations of Motion: General Plane
Motion

The rigid body (or slab) shown in Fig. 17–19a is subjected to general plane
motion caused by the externally applied force and couple-moment system.
The free-body and kinetic diagrams for the body are shown in Fig. 17–19b.
If an x and y inertial coordinate system is established as shown, the three
equations of motion are

(17–17)

In some problems it may be convenient to sum moments about a point
P other than G in order to eliminate as many unknown forces as possible
from the moment summation. When used in this more general case, the
three equations of motion are

(17–18)

Here represents the moment sum of and (or its
components) about P as determined by the data on the kinetic diagram.

There is a particular type of problem that involves a uniform cylinder,
or body of circular shape, that rolls on a rough surface without slipping. If
we sum the moments about the instantaneous center of zero velocity,
then becomes The proof is similar to 
(Eq. 17–16), so that 

(17–19)

This result compares with which is used for a body pinned
at point O, Eq. 17–16. See Prob. 17–91.

©MO = IOa ,

©MIC = IICa

©MO = IOaIICa.©1mk2IC

maGIG A©1mk2P

©Fx = m1aG2x
©Fy = m1aG2y

©MP = ©1mk2P

©Fx = m1aG2x
©Fy = m1aG2y

©MG = IGa

aG

G

M1

M2

F4

F1

F2

F3

(a)

V

A

Fig. 17–19
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Procedure for Analysis

Kinetic problems involving general plane motion of a rigid body can
be solved using the following procedure.

Free-Body Diagram.

• Establish the x, y inertial coordinate system and draw the free-
body diagram for the body.

• Specify the direction and sense of the acceleration of the mass
center, and the angular acceleration of the body.

• Determine the moment of inertia 
• Identify the unknowns in the problem.
• If it is decided that the rotational equation of motion

is to be used, then consider drawing the kinetic
diagram in order to help “visualize” the “moments” developed by
the components and when writing the terms
in the moment sum 

Equations of Motion.

• Apply the three equations of motion in accordance with the
established sign convention.

• When friction is present, there is the possibility for motion with
no slipping or tipping. Each possibility for motion should be
considered.

Kinematics.

• Use kinematics if a complete solution cannot be obtained strictly
from the equations of motion.

• If the body’s motion is constrained due to its supports, additional
equations may be obtained by using which
relates the accelerations of any two points A and B on the body.

• When a wheel, disk, cylinder, or ball rolls without slipping, then
aG = ar.

aB = aA + aB>A ,

©1mk2P .
IG Am1aG2y ,m1aG2x ,

©MP = ©1mk2P

IG .
AaG ,

=

IG

Gy

Gx

FA

NA

maG

W

G

G

A

A

d

A

As the soil compactor, or “sheep’s foot
roller” moves forward, the roller has
general plane motion. The forces shown
on its free-body diagram cause the effects
shown on the kinetic diagram. If moments
are summed about the mass center, G,
then However, if moments
are summed about point A (the ) then
a+©MA = IGa + 1maG2d = IAa.

IC
©MG = IGa.
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EXAMPLE 17.13

Determine the angular acceleration of the spool in Fig. 17–20a. The
spool has a mass of 8 kg and a radius of gyration of 
The cords of negligible mass are wrapped around its inner hub and
outer rim.

SOLUTION I 
Free-Body Diagram. Fig. 17–20b. The 100-N force causes to act
upward. Also, acts clockwise, since the spool winds around the cord
at A.

There are three unknowns T, and The moment of inertia of
the spool about its mass center is

Equations of Motion.

(1)

c (2)

Kinematics. A complete solution is obtained if kinematics is used to
relate to In this case the spool “rolls without slipping” on the cord
at A. Hence, we can use the results of Example 16.4 or 16.15, so that

(c (3)

Solving Eqs. 1 to 3, we have

Ans.

SOLUTION II
Equations of Motion. We can eliminate the unknown T by summing
moments about point A. From the free-body and kinetic diagrams
Figs. 17–20b and 17–20c, we have

c

Using Eq. (3),

Ans.
SOLUTION III
Equations of Motion. The simplest way to solve this problem is to
realize that point A is the IC for the spool. Then Eq. 17–19 applies.

c

a = 10.3 rad>s2

= [0.980 kg # m2 + 18 kg210.5 m22]a
1100 N210.7 m2 - 178.48 N210.5 m2+©MA = IAa ;

a = 10.3 rad>s2

= 10.980 kg # m22a + [18 kg2aG]10.5 m2
100 N10.7 m2 - 78.48 N10.5 m2+©MA = ©1mk2A ;

 T = 19.8 N

 aG = 5.16 m>s2

 a = 10.3 rad>s2

aG = a (0.5 m)+) aG = ar.

a.aG

100 N10.2 m2 - T10.5 m2 = 10.980 kg # m22a+©MG = IGa;

T + 100 N - 78.48 N = 18 kg2aG+ c©Fy = m1aG2y ;

IG = mkG2 = 8 kg10.35 m22 = 0.980 kg # m2

a.aG ,

A

aG

kG = 0.35 m.

0.5 m0.2 m

A

100 N

G

(a)

100 N

0.2 m
0.5 m

G

78.48 N

(b)

aG

y

x
T

A

A

G

(8 kg) aG

(0.980 kg � m2)

(c)

AA
0.5 m

Fig. 17–20
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EXAMPLE 17.14

G

(a)

1.25 ft

M � 35 lb � ft

A

The 50-lb wheel shown in Fig. 17–21a has a radius of gyration
If a couple moment is applied to the wheel,

determine the acceleration of its mass center G. The coefficients of
static and kinetic friction between the wheel and the plane at A are

and respectively.

SOLUTION

Free-Body Diagram. By inspection of Fig. 17–21b, it is seen that the
couple moment causes the wheel to have a clockwise angular
acceleration of As a result, the acceleration of the mass center,
is directed to the right. The moment of inertia is

The unknowns are and 

Equations of Motion.

(1)

(2)

c (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping). If this assumption is made, then

(c (4)

Solving Eqs. 1 to 4,

This solution requires that no slipping occurs, i.e.,
However, since the wheel slips as it rolls.

(Slipping). Equation 4 is not valid, and so or

(5)

Solving Eqs. 1 to 3 and 5 yields

Ans.aG = 8.05 ft>s2 :
a = 25.5 rad>s2

NA = 50.0 lb FA = 12.5 lb

FA = 0.25NA

FA = mkNA ,

21.3 lb 7 0.3150 lb2 = 15 lb,
FA … msNA .

a = 11.0 rad>s2 aG = 13.7 ft>s2

NA = 50.0 lb FA = 21.3 lb

aG = 11.25 ft2a+)

35 lb # ft - 1.25 ft1FA2 = 10.7609 slug # ft22a+©MG = IGa;

NA - 50 lb = 0+ c©Fy = m1aG2y ;
FA = a 50 lb

32.2 ft>s2 baG:+ ©Fx = m1aG2x ;

a.aG ,FA ,NA ,

IG = mkG2 =
50 lb

32.2 ft>s2 10.70 ft22 = 0.7609 slug # ft2

aG ,A.

mk = 0.25,ms = 0.3

35-lb # ftkG = 0.70 ft.

35 lb � ft

G

(b)

1.25 ft

50 lb

aG

y

x

FA

NA

A

Fig. 17–21 



444 CH A P T E R 17 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  FO R C E A N D AC C E L E R AT I O N

17

EXAMPLE 17.15

The uniform slender pole shown in Fig. 17–22a has a mass of 100 kg. If
the coefficients of static and kinetic friction between the end of the
pole and the surface are and respectively,
determine the pole’s angular acceleration at the instant the 400-N
horizontal force is applied. The pole is originally at rest.

SOLUTION
Free-Body Diagram. Figure 17–22b.The path of motion of the mass
center G will be along an unknown curved path having a radius of
curvature which is initially on a vertical line. However, there is no
normal or y component of acceleration since the pole is originally at
rest, i.e., so that We will assume the mass
center accelerates to the right and that the pole has a clockwise
angular acceleration of The unknowns are and 

Equation of Motion.

(1)

(2)

c (3)

A fourth equation is needed for a complete solution.

Kinematics (No Slipping). With this assumption, point A acts as a
“pivot” so that is clockwise, then is directed to the right.

(4)

Solving Eqs. 1 to 4 yields

The assumption of no slipping requires However,
and so the pole slips at A.

(Slipping). For this case Eq. 4 does not apply. Instead the frictional
equation must be used. Hence,

(5)

Solving Eqs. 1 to 3 and 5 simultaneously yields

d Ans.a = -0.428 rad>s2 = 0.428 rad>s2

NA = 981 N FA = 245 N aG = 1.55 m>s2

FA = 0.25NA

FA = mkNA

300 N 7 0.31981 N2 = 294 N
FA … msNA .

aG = 1 m>s2 a = 0.667 rad>s2

NA = 981 N FA = 300 N

aG = (1.5 m) aaG = arAG ;

aGa

FA11.5 m2 - (400 N)11 m2 = 1[ 1
121100 kg213 m222a+©MG = IGa;

NA - 981 N = 0+ c©Fy = m1aG2y ;
400 N - FA = 1100 kg2aG:+ ©Fx = m1aG2x ;

a.aG ,FA ,NA ,A.

1aG2y = vG2 >r = 0.vG = 0,

r,

mk = 0.25,ms = 0.3

0.5 m

400 N

3 m

(a)

A

1.5 m
400 N

1 m

G

FA

NA

981 N

(b)

aG

y

xA

Fig. 17–22
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EXAMPLE 17.16

The uniform 50-kg bar in Fig. 17–23a is held in the equilibrium
position by cords AC and BD. Determine the tension in BD and the
angular acceleration of the bar immediately after AC is cut.

SOLUTION

Free-Body Diagram. Fig. 17–23b. There are four unknowns,
and .

Equations of Motion.

(1)

a (2)

Kinematics. Since the bar is at rest just after the cable is cut, then its
angular velocity and the velocity of point B at this instant are equal to
zero. Thus . Therefore, only has a tangential
component, which is directed along the x axis, Fig. 17–23c. Applying
the relative acceleration equation to points G and B,

Equating the i and j components of both sides of this equation,

(3)

Solving Eqs. (1) through (3) yields

Ans.

Ans.

 1aG2y = 7.36 m>s2

 TB = 123 N

 a = 4.905 rad>s2

 1aG2y = 1.5a

 0 = aB

 -1aG2yj = aBi - 1.5aj

-  1aG2yj = aBi + 1ak2 * 1-1.5i2 - 0

 aG = aB + A * rG/B - v2rG/B

aB1aB2n = vB2 >rBD = 0

TB11.5 m) = B 1
12
150 kg213 m22Ra+©MG = IGa ;

TB - 5019.812N = -150 kg aG2y+ c©Fy = m1aG2y ;
1aG2x = 0

0 = 150 kg aG2x:+ ©Fx = m1aG2x ;

a1aG2y ,1aG2x ,
TB ,

C D

BA 

 3 m

(a)

B

 1.5 m

50(9.81) N

(b)

x

y

TB

G

B

(c)

G

 � 0

(aG)x = 0

(aG)y

aB

 1.5 m

rG/B
� �

Fig. 17–23
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FUNDAMENTAL PROBLEMS

F17–15

O

0.4 m

M � 100 N � m

F17–18

A

0.6 m

u

F17–16

0.15 m

30�

F17–17

0.4 m

0.6 m

BA

G M � 450 N � m

 20 N

80 N

0.75 m 0.5 m
1.75 m

0.3 m
P � 200 N

F17–14

F17–13

F17–16. The sphere rolls down the inclined plane
without slipping. Determine the angular acceleration of the
sphere and the acceleration of its mass center.

20-kg

F17–15. The wheel has a radius of gyration about its
center of When the wheel is subjected to
the couple moment, it slips as it rolls. Determine the angular
acceleration of the wheel and the acceleration of the
wheel’s center The coefficient of kinetic friction between
the wheel and the plane is mk = 0.5.

O.

kO = 300 mm.O
20-kg

F17–13. The uniform slender bar is initially at rest
on a smooth horizontal plane when the forces are applied.
Determine the acceleration of the bar’s mass center and the
angular acceleration of the bar at this instant.

60-kg

F17–18. The slender rod is pinned to a small roller 
that slides freely along the slot. If the rod is released from
rest at determine the angular acceleration of the rod
and the acceleration of the roller immediately after the
release.

u = 0°,

A12-kg

F17–14. The cylinder rolls without slipping on the
horizontal plane. Determine the acceleration of its mass
center and its angular acceleration.

100-kg F17–17. The spool has a radius of gyration about its
mass center of If the couple moment is
applied to the spool and the coefficient of kinetic friction
between the spool and the ground is determine
the angular acceleration of the spool, the acceleration of 
and the tension in the cable.

G
mk = 0.2,

kG = 300 mm.
200-kg



17.5 EQUATIONS OF MOTION: GENERAL PLANE MOTION 447

17
O

0.4 m

A

�

u

Probs. 17–92/93

PROBLEMS

17–95. The rocket consists of the main section A having a
mass of 10 Mg and a center of mass at . The two identical
booster rockets B and C each have a mass of 2 Mg with
centers of mass at and , respectively. At the instant
shown, the rocket is traveling vertically and is at an altitude
where the acceleration due to gravity is . If
the booster rockets B and C suddenly supply a thrust of

and , respectively, determine the
angular acceleration of the rocket. The radius of gyration of
A about is and the radii of gyration of  B and
C about and are .kB = kC = 0.75 mGCGB

kA = 2 mGA

TC = 20 kNTB = 30 kN

g = 8.75 m>s2

GCGB

GA

17–91. If a disk rolls without slipping on a horizontal
surface, show that when moments are summed about the
instantaneous center of zero velocity, IC, it is possible to use
the moment equation , where represents
the moment of inertia of the disk calculated about the
instantaneous axis of zero velocity.

*17–92. The 10-kg semicircular disk is rotating at
at the instant . Determine the normal

and frictional forces it exerts on the ground at at this
instant. Assume the disk does not slip as it rolls.

•17–93. The semicircular disk having a mass of 10 kg is
rotating at at the instant . If the
coefficient of static friction at A is , determine if the
disk slips at this instant.

ms = 0.5
u = 60°v = 4 rad>s

A
u = 60°v = 4 rad>s

IIC©MIC = IICa

17–94. The uniform 50-lb board is suspended from cords
at C and D. If these cords are subjected to constant forces
of 30 lb and 45 lb, respectively, determine the initial
acceleration of the board’s center and the board’s angular
acceleration. Assume the board is a thin plate. Neglect the
mass of the pulleys at E and F.

E

30 lb 45 lb

F

C D
A

10 ft
B

Prob. 17–94
P � 150 N

G

z

y
x

250 mm

Prob. 17–96

*17–96. The 75-kg wheel has a radius of gyration about the
z axis of . If the belt of negligible mass is
subjected to a force of , determine the acceleration
of the mass center and the angular acceleration of the wheel.
The surface is smooth and the wheel is free to slide.

P = 150 N
kz = 150 mm

A

GA

C B

GBGC

TC  � 20 kN TB  � 30 kN

TA  � 150 kN

6 m

1.5 m1.5 m

Prob. 17–95
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*17–100. The circular concrete culvert rolls with an
angular velocity of when the man is at the
position shown. At this instant the center of gravity of the
culvert and the man is located at point G, and the radius of
gyration about G is . Determine the angular
acceleration of the culvert. The combined weight of the
culvert and the man is 500 lb. Assume that the culvert rolls
without slipping, and the man does not move within the
culvert.

kG = 3.5 ft

v = 0.5 rad>s

17–99. Two men exert constant vertical forces of 40 lb
and 30 lb at ends A and B of a uniform plank which has a
weight of 50 lb. If the plank is originally at rest in the
horizontal position, determine the initial acceleration of its
center and its angular acceleration. Assume the plank to be
a slender rod.

•17–97. The wheel has a weight of 30 lb and a radius of
gyration of If the coefficients of static and
kinetic friction between the wheel and the plane are

and determine the wheel’s angular
acceleration as it rolls down the incline. Set 

17–98. The wheel has a weight of 30 lb and a radius of
gyration of If the coefficients of static and
kinetic friction between the wheel and the plane are

and determine the maximum angle of
the inclined plane so that the wheel rolls without slipping.

umk = 0.15,ms = 0.2

kG = 0.6 ft.

u = 12°.
mk = 0.15,ms = 0.2

kG = 0.6 ft.

•17–101. The lawn roller has a mass of 80 kg and a radius
of gyration . If it is pushed forward with a
force of 200 N when the handle is at 45°, determine its
angular acceleration. The coefficients of static and kinetic
friction between the ground and the roller are 
and , respectively.

17–102. Solve Prob. 17–101 if and .mk = 0.45ms = 0.6

mk = 0.1
ms = 0.12

kG = 0.175 m

1.25 ft

G

u

Probs. 17–97/98

15 ft

A B

40 lb 30 lb

Prob. 17–99

4 ft

0.5 ft

G
O

v

Prob. 17–100

200 mm

200 N

G
45�

A

Probs. 17–101/102
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3 ft

Probs. 17–106/107

d A

2 ft

F

Probs. 17–108/109

G

C

B

A

T � 2000 lb

T = 2000 lb

200 ft
100 ft

Prob. 17–110

*17–108. A uniform rod having a weight of 10 lb is pin
supported at A from a roller which rides on a horizontal
track. If the rod is originally at rest, and a horizontal force of

is applied to the roller, determine the
acceleration of the roller. Neglect the mass of the roller and
its size d in the computations.

•17–109. Solve Prob. 17–108 assuming that the roller at A
is replaced by a slider block having a negligible mass. The
coefficient of kinetic friction between the block and the
track is . Neglect the dimension d and the size of
the block in the computations.

mk = 0.2

F =  15 lb

17–106. The truck carries the spool which has a weight of
500 lb and a radius of gyration of Determine the
angular acceleration of the spool if it is not tied down on the
truck and the truck begins to accelerate at Assume
the spool does not slip on the bed of the truck.

17–107. The truck carries the spool which has a weight of
200 lb and a radius of gyration of Determine the
angular acceleration of the spool if it is not tied down on
the truck and the truck begins to accelerate at The
coefficients of static and kinetic friction between the spool
and the truck bed are and respectively.mk = 0.1,ms = 0.15

5 ft>s2.

kG = 2 ft.

3 ft>s2.

kG = 2 ft.

17–103. The spool has a mass of 100 kg and a radius of
gyration of . If the coefficients of static and
kinetic friction at A are and ,
respectively, determine the angular acceleration of the
spool if .

*17–104. Solve Prob. 17–103 if the cord and force
are directed vertically upwards.

•17–105. The spool has a mass of 100 kg and a radius of
gyration . If the coefficients of static and kinetic
friction at A are and , respectively,
determine the angular acceleration of the spool if

.P = 600 N

mk = 0.15ms = 0.2
kG = 0.3 m

P = 50 N

P = 50 N

mk = 0.15ms = 0.2
kG = 0.3 m

17–110. The ship has a weight of and center of
gravity at G. Two tugboats of negligible weight are used to
turn it. If each tugboat pushes on it with a force of

, determine the initial acceleration of its center
of gravity G and its angular acceleration. Its radius of
gyration about its center of gravity is . Neglect
water resistance.

kG = 125 ft

T = 2000 lb

4(106) lb

250 mm 400 mm
G

A

P

Probs. 17–103/104/105
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3 ft

1.25 ft

A

B

M � 40 lb�ft

Prob. 17–111

17–114. The 20-kg disk A is attached to the 10-kg block B
using the cable and pulley system shown. If the disk rolls
without slipping, determine its angular acceleration and the
acceleration of the block when they are released.Also, what
is the tension in the cable? Neglect the mass of the pulleys.

17–115. Determine the minimum coefficient of static
friction between the disk and the surface in Prob. 17–114 so
that the disk will roll without slipping. Neglect the mass of
the pulleys.

*17–112. The assembly consists of an 8-kg disk and a 10-kg
bar which is pin connected to the disk. If the system is
released from rest, determine the angular acceleration of
the disk. The coefficients of static and kinetic friction
between the disk and the inclined plane are and

, respectively. Neglect friction at B.

•17–113. Solve Prob. 17–112 if the bar is removed. The
coefficients of static and kinetic friction between the disk
and inclined plane are and , respectively.mk = 0.1ms = 0.15

mk = 0.4
ms = 0.6

17–111. The 15-lb cylinder is initially at rest on a 5-lb
plate. If a couple moment is applied to the
cylinder, determine the angular acceleration of the cylinder
and the time needed for the end B of the plate to travel 3 ft
to the right and strike the wall. Assume the cylinder does
not slip on the plate, and neglect the mass of the rollers
under the plate.

M = 40 lb #  ft

*17–116. The 20-kg square plate is pinned to the 5-kg
smooth collar. Determine the initial angular acceleration of
the plate when is applied to the collar. The plate
is originally at rest.

•17–117. The 20-kg square plate is pinned to the 5-kg
smooth collar. Determine the initial acceleration of the
collar when is applied to the collar. The plate is
originally at rest.

P = 100 N

P = 100 N

1 m

A

C

B

30�

0.3 m

Probs. 17–112/113

B

A
G

0.2 m

Probs. 17–114/115

P � 100 N

A

300 mm 300 mm

Probs. 17–116/117
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B

C

A

1.5 m

2.5 m

60�

Prob. 17–120

M

G

450 mm

Probs. 17–121/122

•17–121. The 75-kg wheel has a radius of gyration about its
mass center of . If it is subjected to a torque of

, determine its angular acceleration. The
coefficients of static and kinetic friction between the wheel
and the ground are and , respectively.

17–122. The 75-kg wheel has a radius of gyration about its
mass center of . If it is subjected to a torque of

, determine its angular acceleration. The
coefficients of static and kinetic friction between the wheel
and the ground are and , respectively.mk = 0.15ms = 0.2

M = 150 N # m
kG = 375 mm

mk = 0.15ms = 0.2

M = 100 N # m
kG = 375 mm

*17–120. If the truck accelerates at a constant rate of
, starting from rest, determine the initial angular

acceleration of the 20-kg ladder. The ladder can be
considered as a uniform slender rod. The support at B is
smooth.

6 m>s2

17–118. The spool has a mass of 100 kg and a radius of
gyration of about its center of mass . If a
vertical force of is applied to the cable,
determine the  acceleration of and the angular
acceleration of the spool. The coefficients of static and
kinetic friction between the rail and the spool are 
and , respectively.

17–119. The spool has a mass of 100 kg and a radius of
gyration of about its center of mass . If a
vertical force of is applied to the cable, determine
the acceleration of and the angular acceleration of the spool.
The coefficients of static and kinetic friction between the rail
and the spool are and , respectively.mk = 0.15ms = 0.2

G
P = 500 N

GkG = 200 mm

mk = 0.25
ms = 0.3

G
P = 200 N

GkG = 200 mm

17–123. The 500-kg concrete culvert has a mean radius of
0.5 m. If the truck has an acceleration of , determine
the culvert’s angular acceleration. Assume that the culvert
does not slip on the truck bed, and neglect its thickness.

3 m>s2

300 mm

150 mm

P

G

Probs. 17–118/119

4 m

0.5m

3 m/s2

Prob. 17–123
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CONCEPTUAL PROBLEMS

P17–3. How can you tell the driver is accelerating this
SUV? To explain your answer, draw the free-body and
kinetic diagrams. Here power is supplied to the rear wheels.
Would the photo look the same if power were supplied to
the front wheels? Will the accelerations be the same? Use
appropriate numerical values to explain your answers.

P17–2. The tractor is about to tow the plane to the right. Is
it possible for the driver to cause the front wheel of the
plane to lift off the ground as he accelerates the tractor?
Draw the free-body and kinetic diagrams and explain
algebraically (letters) if and how this might be possible.

P17–1. The truck is used to pull the heavy container. To be
most effective at providing traction to the rear wheels at ,
is it best to keep the container where it is or place it at the
front of the trailer? Use appropriate numerical values to
explain your answer.

A

P17–4. Here is something you should not try at home, at
least not without wearing a helmet! Draw the free-body and
kinetic diagrams and show what the rider must do to
maintain this position. Use appropriate numerical values to
explain your answer.

A

P17–1 P17–3

P17–4P17–2
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CHAPTER REVIEW

Moment of Inertia

The moment of inertia is a measure of
the resistance of a body to a change in its
angular velocity. It is defined by

and will be different for each
axis about which it is computed.
I = 1r

2dm

Many bodies are composed of simple
shapes. If this is the case, then tabular
values of I can be used, such as the ones
given on the inside back cover of this
book. To obtain the moment of inertia of
a composite body about any specified
axis, the moment of inertia of each part is
determined about the axis and the results
are added together. Doing this often
requires use of the parallel-axis theorem.

I = IG + md2

Planar Equations of Motion

The equations of motion define the
translational, and rotational motion of a
rigid body. In order to account for all of
the terms in these equations, a free-body
diagram should always accompany their
application, and for some problems, it may
also be convenient to draw the kinetic
diagram which shows and .IGAmaG

r

G

IG

dm

m

I

d

Rectilinear translation

©MG = 0

©Fy = m1aG2y
©Fx = m1aG2x

Curvilinear translation

©MG = 0

©Ft = m1aG2t
©Fn = m1aG2n

or

Rotation About a Fixed Axis

©MO = IOa©MG = IGa

©Ft = m1aG2t = marG
©Fn = m1aG2n = mv2rG

©Fx = m1aG2x

or ©MP = ©1mk2P©MG = IGa

©Fx = m1aG2x

General Plane Motion



The principle of work and energy plays an important role in the motion of the draw
works used to lift pipe on this drilling rig.



Planar Kinetics of a
Rigid Body: Work and
Energy
CHAPTER OBJECTIVES

• To develop formulations for the kinetic energy of a body, and define
the various ways a force and couple do work.

• To apply the principle of work and energy to solve rigid–body
planar kinetic problems that involve force, velocity, and
displacement.

• To show how the conservation of energy can be used to solve
rigid–body planar kinetic problems.

18.1 Kinetic Energy

In this chapter we will apply work and energy methods to solve planar
motion problems involving force, velocity, and displacement. But first it will
be necessary to develop a means of obtaining the body’s kinetic energy
when the body is subjected to translation, rotation about a fixed axis, or
general plane motion.

To do this we will consider the rigid body shown in Fig. 18–1, which is
represented here by a slab moving in the inertial x–y reference plane.An
arbitrary ith particle of the body, having a mass dm, is located a distance
r from the arbitrary point P. If at the instant shown the particle has a
velocity then the particle’s kinetic energy is Ti = 1

2 dm vi
2.vi ,

18

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1
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The kinetic energy of the entire body is determined by writing similar
expressions for each particle of the body and integrating the results, i.e.,

This equation may also be expressed in terms of the velocity of point
P. If the body has an angular velocity then from Fig. 18–1 we have

The square of the magnitude of is thus

Substituting this into the equation of kinetic energy yields

= vP2 - 21vP2xvy + 21vP2yvx + v2r2
= 1vP2x2 - 21vP2xvy + v2y2 + 1vP2y2 + 21vP2yvx + v2x2

vi # vi = vi2 = [1vP2x - vy]2 + [1vP2y + vx]2

vi

= [1vP2x - vy]i + [1vP2y + vx]j
= 1vP2x i + 1vP2y j + vk * 1xi + yj2

vi = vP + vi>P

V,

T =
1
2Lm
dm vi

2

y

x

x

yr

P

i

vP

vi

V

Fig. 18–1

1vP2yva
Lm
x dmb +

1
2
v2a
Lm
r2 dmbT =

1
2
a
Lm
dmbvP2 - 1vP2xva

Lm
y dmb +

The first integral on the right represents the entire mass m of the body.
Since and the second and third integrals
locate the body’s center of mass G with respect to P. The last integral
represents the body’s moment of inertia computed about the z axis
passing through point P. Thus,

(18–1)

As a special case, if point P coincides with the mass center G of the
body, then and therefore

(18–2)

Both terms on the right side are always positive, since are
squared. The first term represents the translational kinetic energy,
referenced from the mass center, and the second term represents the
body’s rotational kinetic energy about the mass center.

vG and v

T = 1
2mvG

2 + 1
2IGv

2

y = x = 0,

T = 1
2mvP

2 - 1vP2xvym + 1vP2yvxm + 1
2IPv

2

IP ,

xm = 1x dm,ym = 1y dm
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Translation. When a rigid body of mass m is subjected to either
rectilinear or curvilinear translation, Fig. 18–2, the kinetic energy due to
rotation is zero, since The kinetic energy of the body is therefore

(18–3)

Rotation About a Fixed Axis. When a rigid body rotates about
a fixed axis passing through point O, Fig. 18–3, the body has both
translational and rotational kinetic energy so that

(18–4)

The body’s kinetic energy may also be formulated for this case by noting
that so that By the parallel–axis
theorem, the terms inside the parentheses represent the moment of
inertia of the body about an axis perpendicular to the plane of motion
and passing through point O. Hence,* 

(18–5)

From the derivation, this equation will give the same result as Eq. 18–4,
since it accounts for both the translational and rotational kinetic energies
of the body.

General Plane Motion. When a rigid body is subjected to general
plane motion, Fig. 18–4, it has an angular velocity and its mass center
has a velocity Therefore, the kinetic energy is

(18–6)

This equation can also be expressed in terms of the body’s motion about
its instantaneous center of zero velocity i.e.,

(18–7)

where is the moment of inertia of the body about its instantaneous
center. The proof is similar to that of Eq. 18–5. (See Prob. 18–1.)

IIC

T = 1
2IICv

2

T = 1
2mvG

2 + 1
2IGv

2

vG .
V

T = 1
2IOv

2

IO

T = 1
21IG + mrG2 2v2.vG = rGv,

T = 1
2mvG

2 + 1
2IGv

2

T = 1
2mvG

2

V = 0.
vG � v

G

Translation

v

Fig. 18–2

vG

G

V

rG
O

Rotation About a Fixed Axis

Fig. 18–3

*The similarity between this derivation and that of Eq. 17–16, should be
noted. Also the same result can be obtained directly from Eq. 18–1 by selecting point P
at O, realizing that vO = 0.

©MO = IOa,

vG

G

General Plane Motion

V

Fig. 18–4
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System of Bodies. Because energy is a scalar quantity, the total
kinetic energy for a system of connected rigid bodies is the sum of the
kinetic energies of all its moving parts. Depending on the type of motion,
the kinetic energy of each body is found by applying Eq. 18–2 or the
alternative forms mentioned above.

18.2 The Work of a Force

Several types of forces are often encountered in planar kinetics problems
involving a rigid body.The work of each of these forces has been presented
in Sec. 14.1 and is listed below as a summary.

Work of a Variable Force. If an external force F acts on a
body, the work done by the force when the body moves along the path
s, Fig. 18–5, is

(18–8)

Here is the angle between the “tails” of the force and the differential
displacement. The integration must account for the variation of the
force’s direction and magnitude.

u

UF =
L

F # dr =
Ls
F cos u ds

Work of a Constant Force. If an external force acts on a
body, Fig. 18–6, and maintains a constant magnitude and constant
direction while the body undergoes a translation s, then the above
equation can be integrated, so that the work becomes

(18–9)UFc = 1Fc cos u2s

u,
Fc

Fc

s

F

F

Fig. 18–5 
s

Fc

Fc

Fc cos u

Fc cos u

u

u

Fig. 18–6

The total kinetic energy of this soil
compactor consists of the kinetic energy
of the body or frame of the machine due
to its translation, and the translational
and rotational kinetic energies of the
roller and the wheels due to their
general plane motion. Here we exclude
the additional kinetic energy developed
by the moving parts of the engine and
drive train.
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Work of a Weight. The weight of a body does work only when the
body’s center of mass G undergoes a vertical displacement If this
displacement is upward, Fig. 18–7, the work is negative, since the weight
is opposite to the displacement.

(18–10)

Likewise, if the displacement is downward the work becomes
positive. In both cases the elevation change is considered to be small so
that W, which is caused by gravitation, is constant.

Work of a Spring Force. If a linear elastic spring is attached to a
body, the spring force acting on the body does work when the
spring either stretches or compresses from to a further position In
both cases the work will be negative since the displacement of the body is
in the opposite direction to the force, Fig. 18–8. The work is

(18–11)

where 

Forces That Do No Work. There are some external forces that
do no work when the body is displaced. These forces act either at fixed
points on the body, or they have a direction perpendicular to their
displacement. Examples include the reactions at a pin support about
which a body rotates, the normal reaction acting on a body that moves
along a fixed surface, and the weight of a body when the center of gravity
of the body moves in a horizontal plane, Fig. 18–9. A frictional force 
acting on a round body as it rolls without slipping over a rough surface
also does no work.*  This is because, during any instant of time dt, acts
at a point on the body which has zero velocity (instantaneous center, IC)
and so the work done by the force on the point is zero. In other words,
the point is not displaced in the direction of the force during this instant.
Since contacts successive points for only an instant, the work of will
be zero.

FfFf

Ff

Ff

ƒ s2 ƒ 7 ƒ s1 ƒ .

Us = - A12 ks2
2 - 1

2 ks1
2 B

s2 .s1

Fs = ks

1-¢y2

UW = -W ¢y

¢y.

W

W

G

G

�y

s

Fig. 18–7

s1

s

s2

Fsk

Unstretched
position of
spring, s � 0

Fig. 18–8

r
Ff

N

W

IC

V

Fig. 18–9*The work done by a frictional force when the body slips is discussed in Sec. 14.3.
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18.3 The Work of a Couple Moment

Consider the body in Fig. 18–10a, which is subjected to a couple moment
If the body undergoes a differential displacement, then the work

done by the couple forces can be found by considering the displacement
as the sum of a separate translation plus rotation.When the body translates,
the work of each force is produced only by the component of displacement
along the line of action of the forces Fig. 18–10b. Clearly the
“positive” work of one force cancels the “negative” work of the other.
When the body undergoes a differential rotation about the arbitrary
point O, Fig. 18–10c, then each force undergoes a displacement

in the direction of the force. Hence, the total work done is

The work is positive when M and have the same sense of direction and
negative if these vectors are in the opposite sense.

When the body rotates in the plane through a finite angle measured
in radians, from to the work of a couple moment is therefore 

(18–12)

If the couple moment M has a constant magnitude, then

(18–13)UM = M1u2 - u12

UM =
L

u2

u1

M du

u2 ,u1

u

dU

= M du

dUM = Fa r
2
dub + Fa r

2
dub = 1Fr2 du

dsu = 1r>22 du
du

dst ,

M = Fr.

(a)

M

u

r

(b)

F

F

Translation

dst

(c)

F

F

Odu

Rotation

dsu

dsu
du

r
2

r
2

Fig. 18–10
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The bar shown in Fig. 18–11a has a mass of 10 kg and is subjected to a
couple moment of and a force of which is
always applied perpendicular to the end of the bar. Also, the spring
has an unstretched length of 0.5 m and remains in the vertical position
due to the roller guide at B. Determine the total work done by all the
forces acting on the bar when it has rotated downward from to

SOLUTION
First the free-body diagram of the bar is drawn in order to account for
all the forces that act on it, Fig. 18–11b.

Weight W. Since the weight is displaced
downward 1.5 m, the work is

Why is the work positive?

Couple Moment M. The couple moment rotates through an angle
of Hence,

Spring Force When the spring is stretched 
, and when the stretch is 

2.25 m.Thus,

By inspection the spring does negative work on the bar since acts in
the opposite direction to displacement. This checks with the result.

Force P. As the bar moves downward, the force is displaced through
a distance of The work is positive. Why?

Pin Reactions. Forces and do no work since they are not
displaced.

Total Work. The work of all the forces when the bar is displaced is thus

Ans.U = 147.2 J + 78.5 J - 75.0 J + 377.0 J = 528 J

AyAx

UP = 80 N14.712 m2 = 377.0 J

1p>2213 m2 = 4.712 m.

Fs

Us = - C12130 N>m212.25 m22 - 1
2130 N>m210.25 m22 D = -75.0 J

- 0.5 m =
12 m + 0.75 m2u = 90°,=  0.25 m
10.75 m - 0.5 m2u = 0°Fs.

UM = 50 N # m1p>22 = 78.5 J

u = p>2 rad.

UW = 98.1 N11.5 m2 = 147.2 J

1019.812 N = 98.1 N

u = 90°.
u = 0°

P = 80 N,M = 50 N # m

EXAMPLE 18.1

0.75 m

A

B

2 m

1 m

k � 30 N/m

M = 50 N � m

P � 80 N

(a)

u

1.5 m

1 m
0.5 m

98.1 N

P � 80 N
Fs

Ay

Ax

(b)

50 N � mu

Fig. 18–11
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18.4 Principle of Work and Energy

By applying the principle of work and energy developed in Sec. 14.2 to
each of the particles of a rigid body and adding the results algebraically,
since energy is a scalar, the principle of work and energy for a rigid body
becomes

(18–14)

This equation states that the body’s initial translational and rotational
kinetic energy, plus the work done by all the external forces and couple
moments acting on the body as the body moves from its initial to its final
position, is equal to the body’s final translational and rotational kinetic
energy. Note that the work of the body’s internal forces does not have to
be considered.These forces occur in equal but opposite collinear pairs, so
that when the body moves, the work of one force cancels that of its
counterpart. Furthermore, since the body is rigid, no relative movement
between these forces occurs, so that no internal work is done.

When several rigid bodies are pin connected, connected by
inextensible cables, or in mesh with one another, Eq. 18–14 can be
applied to the entire system of connected bodies. In all these cases the
internal forces, which hold the various members together, do no work
and hence are eliminated from the analysis.

T1 + ©U1–2 = T2

The work of the torque or moment developed by the
driving gears on the motors is transformed into
kinetic energy of rotation of the drum.
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Procedure for Analysis

The principle of work and energy is used to solve kinetic problems
that involve velocity, force, and displacement, since these terms are
involved in the formulation. For application, it is suggested that the
following procedure be used.

Kinetic Energy (Kinematic Diagrams).
• The kinetic energy of a body is made up of two parts. Kinetic

energy of translation is referenced to the velocity of the mass
center, and kinetic energy of rotation is determined
using the moment of inertia of the body about the mass center,

In the special case of rotation about a fixed axis (or
rotation about the IC), these two kinetic energies are combined
and can be expressed as where is the moment of
inertia about the axis of rotation.

• Kinematic diagrams for velocity may be useful for determining
and or for establishing a relationship between and * 

Work (Free–Body Diagram).
• Draw a free–body diagram of the body when it is located at an

intermediate point along the path in order to account for all the
forces and couple moments which do work on the body as it
moves along the path.

• A force does work when it moves through a displacement in the
direction of the force.

• Forces that are functions of displacement must be integrated to
obtain the work. Graphically, the work is equal to the area under
the force–displacement curve.

• The work of a weight is the product of its magnitude and the
vertical displacement, It is positive when the weight
moves downwards.

• The work of a spring is of the form where k is the
spring stiffness and s is the stretch or compression of the spring.

• The work of a couple is the product of the couple moment and
the angle in radians through which it rotates, .

• Since algebraic addition of the work terms is required, it is important
that the proper sign of each term be specified. Specifically, work is
positive when the force (couple moment) is in the same direction as
its displacement (rotation); otherwise, it is negative.

Principle of Work and Energy.
• Apply the principle of work and energy, Since

this is a scalar equation, it can be used to solve for only one
unknown when it is applied to a single rigid body.

T1 + ©U1–2 = T2 .

UM = Mu

Us = 1
2ks

2,

UW = Wy.

v.vGvvG

IOT = 1
2IOv

2,

T = 1
2IGv

2.

T = 1
2mvG

2 ,

*A brief review of Secs. 16.5 to 16.7 may prove helpful when solving problems,
since computations for kinetic energy require a kinematic analysis of velocity.
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EXAMPLE 18.2

The 30–kg disk shown in Fig. 18–12a is pin supported at its center.
Determine the number of revolutions it must make to attain an
angular velocity of starting from rest. It is acted upon by a
constant force which is applied to a cord wrapped around
its periphery, and a constant couple moment Neglect
the mass of the cord in the calculation.

M = 5 N # m.
F = 10 N,

20 rad>s

0.2 m

O

M � 5 N � m

F � 10 N

(a)

SOLUTION
Kinetic Energy. Since the disk rotates about a fixed axis, and it is
initially at rest, then

Work (Free–Body Diagram). As shown in Fig. 18–12b, the pin
reactions and and the weight (294.3 N) do no work, since they
are not displaced. The couple moment, having a constant magnitude,
does positive work as the disk rotates through a clockwise
angle of rad, and the constant force F does positive work as
the cord moves downward 

Principle of Work and Energy.

s = ur = u10.2 m2. UFc = Fsu

UM = Mu

OyOx

T2 = 1
2IOv2

2 = 1
2 C12130 kg210.2 m22 D 120 rad>s22 = 120 J

T1 = 0

0.2 m

M � 5 N � m

F � 10 N

(b)

O

294.3 N

Oy

Ox

Fig. 18–12
Ans.u = 17.14 rad = 17.14 rada 1 rev

2p rad
b = 2.73 rev

506 + 515 N # m2u + 110 N2u10.2 m26 = 5120 J6
5T16 + 5Mu + Fs6 = 5T26
5T16 + 5©U1-26 = 5T26
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EXAMPLE 18.3

The wheel shown in Fig. 18–13a weighs 40 lb and has a radius of
gyration about its mass center G. If it is subjected to a
clockwise couple moment of and rolls from rest without
slipping, determine its angular velocity after its center G moves 0.5 ft.
The spring has a stiffness and is initially unstretched
when the couple moment is applied.

SOLUTION
Kinetic Energy (Kinematic Diagram). Since the wheel is initially
at rest,

The kinematic diagram of the wheel when it is in the final position is
shown in Fig. 18–13b. The final kinetic energy is determined from

Work (Free–Body Diagram). As shown in Fig. 18–13c, only the
spring force and the couple moment do work. The normal force
does not move along its line of action and the frictional force does no
work, since the wheel does not slip as it rolls.

The work of is found using Here the work is negative
since is in the opposite direction to displacement. Since the wheel
does not slip when the center G moves 0.5 ft, then the wheel rotates

Fig. 18–13b. Hence, the
spring stretches 

Principle of Work and Energy.

b Ans.v2 = 2.65 rad>s
506 + e15 lb # ft10.625 rad2 -

1
2
110 lb>ft211 ft22f = 50.6211 v2

2 ft # lb6
5T16 + EMu - 1

2ks
2F = 5T26

5T16 + 5©U1-26 = 5T26

s = ur
A>IC = (0.625 rad)(1.6 ft) = 1 ft.

u = sG>rG>IC = 0.5 ft>0.8 ft = 0.625 rad,

Fs
Us = -1

2ks
2.Fs

Fs

T2 = 0.6211 v2
2

=
1
2
c 40 lb

32.2 ft>s2 10.6 ft22 + ¢ 40 lb

32.2 ft>s2 ≤(0.8 ft)2 dv2
2

T2 = 1
2IICv2

2

T1 = 0

k = 10 lb>ft
15 lb # ft

kG = 0.6 ft
k � 10 lb/ft A

G

0.8 ft 15 lb � ft

(a)

G

0.8 ft

(b)

1.6 ft

(vG)2

A

IC

V2

Fs

40 lb

(c)

15 lb � ft

FB

NB

Fig. 18–13
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The 700-kg pipe is equally suspended from the two tines of the fork lift
shown in the photo. It is undergoing a swinging motion such that when

it is momentarily at rest. Determine the normal and frictional
forces acting on each tine which are needed to support the pipe at the
instant Measurements of the pipe and the suspender are
shown in Fig. 18–14a. Neglect the mass of the suspender and the
thickness of the pipe.

u = 0°.

u = 30°

EXAMPLE 18.4

G

O

0.15 m

(a)

0.4 m
u

Fig. 18–14 

SOLUTION
We must use the equations of motion to find the forces on the tines
since these forces do no work. Before doing this, however, we will
apply the principle of work and energy to determine the angular
velocity of the pipe when 

Kinetic Energy (Kinematic Diagram). Since the pipe is originally
at rest, then

The final kinetic energy may be computed with reference to either the
fixed point O or the center of mass G. For the calculation we will
consider the pipe to be a thin ring so that If point G is
considered, we have

If point O is considered then the parallel-axis theorem must be used
to determine Hence,

= 63.875v2
2

T2 = 1
2IOv2

2 = 1
2[700 kg10.15 m22 + 700 kg10.4 m22]v2

2

IO .

= 63.875v2
2

= 1
21700 kg2[10.4 m2v2]

2 + 1
2[700 kg10.15 m22]v2

2

T2 = 1
2m1vG222 + 1

2IGv2
2

IG = mr2.

T1 = 0

u = 0°.
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Work (Free-Body Diagram). Fig. 18–14b. The normal and frictional
forces on the tines do no work since they do not move as the pipe swings.
The weight does positive work since the weight moves downward
through a vertical distance 

Principle of Work and Energy.

Equations of Motion. Referring to the free-body and kinetic
diagrams shown in Fig. 18–14c, and using the result for , we have

FT = 1700 kg21aG2t;+ ©Ft = m1aG2t ;
v2

 v2 = 2.400 rad>s
 506 + 570019.812 N10.05359 m26 = 563.875v2

26
 5T16 + 5©U1-26 = 5T26

¢y = 0.4 m - 0.4 cos 30° m = 0.05359 m.

NOTE: Due to the swinging motion the tines are subjected to a
greater normal force than would be the case if the load were static, in
which case NT

œ = 70019.812 N>2 = 3.43 kN.

G

O

700 (9.81) N

(c)

0.4 m

FT

NT

G

O

700 kg(aG)t

700 kg(aG)n 0.4 m=

IGA

Fig. 18–14

G

O

700 (9.81) N

(b)

0.4 m

FT

NT

u

�y

NT - 70019.812 N = 1700 kg212.400 rad>s2210.4 m2+ c©Fn = m1aG2n ;

c

Since then

There are two tines used to support the load, therefore

Ans.

Ans.NT
œ =

8.480 kN
2

= 4.24 kN

FT
œ = 0

 NT = 8.480 kN

 FT = 0

 a = 0, 1aG2t = 0

1aG2t = 10.4 m2a,

0 = [1700 kg210.15 m22 + 1700 kg210.4 m22]a+©MO = IOa;
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EXAMPLE 18.5

The 10–kg rod shown in Fig. 18–15a is constrained so that its ends
move along the grooved slots. The rod is initially at rest when 
If the slider block at B is acted upon by a horizontal force 
determine the angular velocity of the rod at the instant 
Neglect friction and the mass of blocks A and B.

SOLUTION
Why can the principle of work and energy be used to solve this problem?

Kinetic Energy (Kinematic Diagrams). Two kinematic diagrams of
the rod, when it is in the initial position 1 and final position 2, are
shown in Fig. 18–15b. When the rod is in position 1, since

In position 2 the angular velocity is and the
velocity of the mass center is Hence, the kinetic energy is

The two unknowns and can be related from the instantaneous
center of zero velocity for the rod. Fig. 18–15b. It is seen that as A
moves downward with a velocity B moves horizontally to the
left with a velocity Knowing these directions, the IC is located as
shown in the figure. Hence,

Therefore,

Of course, we can also determine this result using .

Work (Free–Body Diagram). Fig. 18–15c. The normal forces 
and do no work as the rod is displaced. Why? The 98.1-N weight is
displaced a vertical distance of whereas
the 50-N force moves a horizontal distance of 
Both of these forces do positive work. Why?

Principle of Work and Energy.

Solving for gives
b Ans.v2 = 6.11 rad>sv2

= 51.0667v2
2 J6

506 + 598.1 N10.4 m - 0.4 cos 45° m2 + 50 N10.8 sin 45° m26
5T16 + 5W ¢y + Ps6 = 5T26

5T16 + 5©U1-26 = 5T26

s = 10.8 sin 45°2 m.
¢y = 10.4 - 0.4 cos 45°2 m;

NB
NA

T2 = 1
2 IICv2

2

T2 = 0.8v2
2 + 0.2667v2

2 = 1.0667v2
2

= 0.4v2

1vG22 = rG>ICv2 = 10.4 tan 45° m2v2

1vB22 .
1vA22 ,

v21vG22
= 51vG222 + 0.26671v222

= 1
2110 kg21vG222 + 1

2 C 1
12110 kg210.8 m22 Dv2

2

T2 = 1
2m1vG222 + 1

2IGv2
2

1vG22 .
V21vG21 = V1 = 0.
T1 = 0

u = 45°.
P = 50 N,
u = 0°.

(b)

(vB)2

B

G

A

0.4 m

0.4 m45�

45�

IC

rG/IC

(vG)2

(vA)2

2

1

G(vG)1 � 0

v1 � 0

V2

(0.4 cos 45�) m

(c)

A

0.4 m

0.4 m

45�

NA

NB

50 N B

98.1 N

(0.8 sin 45�) m

Fig. 18–15

(a)

P � 50 N

B

u
G

A

0.4 m

0.4 m
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FUNDAMENTAL PROBLEMS

F18–4. The wheel is subjected to a force of If the
wheel starts from rest and rolls without slipping, determine 
its angular velocity after it has rotated revolutions. The
radius of gyration of the wheel about its mass center is
kO = 0.3 m.

O
10

50 N.50-kg

F18–2. The uniform slender rod is subjected to a
couple moment of If the rod is at rest when

determine its angular velocity when u = 90°.u = 0°,
M = 100 lb # ft.

50-lb

F18–1. The wheel has a radius of gyration about its
mass center of Determine its angular
velocity after it has rotated 20 revolutions starting from rest.

kO = 400 mm.O
80-kg

F18–5. If the uniform slender rod starts from rest at
the position shown, determine its angular velocity after it
has rotated revolutions.The forces remain perpendicular
to the rod.

4

30-kg

F18–3. The uniform slender rod is at rest in the
position shown when is applied. Determine the
angular velocity of the rod when the rod reaches the vertical
position.

P = 600 N
50-kg F18–6. The wheel has a radius of gyration about its

center of When it is subjected to a couple
moment of it rolls without slipping.
Determine the angular velocity of the wheel after its
center has traveled through a distance of 
starting from rest.

sO = 20 m,O

M = 50 N # m,
kO = 300 mm.O
20-kg

F18–1

0.6 m P � 50 N

O

F18–2

O

5 ft

M�100 lb � ft  

u

F18–3

A

5 m
4 m

B

P � 600 N

F18–4

O

0.4 m

P � 50 N

30�

F18–5

30 N

20 N

0.5 m 0.5 m 0.5 m1.5 m

O
 20 N � m

F18–6

O

0.4 m

M � 50 N�m
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PROBLEMS

18–3. A force of is applied to the cable, which
causes the 175-kg reel to turn without slipping on the two
rollers A and B of the dispenser. Determine the angular
velocity of the reel after it has rotated two revolutions
starting from rest. Neglect the mass of the cable. Each roller
can be considered as an 18-kg cylinder, having a radius of
0.1 m.The radius of gyration of the reel about its center axis
is .kG = 0.42 m

P = 20 N

18–2. The double pulley consists of two parts that are
attached to one another. It has a weight of 50 lb and a radius
of gyration about its center of If it rotates with
an angular velocity of 20 clockwise, determine the
kinetic energy of the system.Assume that neither cable slips
on the pulley.

rad>s
kO = 0.6 ft.

•18–1. At a given instant the body of mass m has an angular
velocity and its mass center has a velocity . Show that
its kinetic energy can be represented as , where

is the moment of inertia of the body computed about
the instantaneous axis of zero velocity, located a distance

from the mass center as shown.rG>IC

IIC

T = 1
2IICv

2
vGV

*18–4. The spool of cable, originally at rest, has a mass of
200 kg and a radius of gyration of . If the
spool rests on two small rollers A and B and a constant
horizontal force of is applied to the end of the
cable, determine the angular velocity of the spool when 8 m
of cable has been unwound. Neglect friction and the mass of
the rollers and unwound cable.

P = 400 N

kG = 325 mm

IC

G
V

rG/IC

vG

Prob. 18–1

1 ft0.5ft
O

A
B 30 lb

20 lb

V � 20 rad/s

Prob. 18–2

500 mm

400 mm

250 mm

30�

P

A

G

B

Prob. 18–3

BA

G P � 400 N200 mm

800 mm

20� 20�

Prob. 18–4
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18–7. The drum has a mass of 50 kg and a radius of gyration
about the pin at O of . Starting from rest, the
suspended 15-kg block B is allowed to fall 3 m without
applying the brake ACD. Determine the speed of the block at
this instant. If the coefficient of kinetic friction at the brake
pad C is , determine the force P that must be applied
at the brake handle which will then stop the block after it
descends another 3 m. Neglect the thickness of the handle.

*18–8. The drum has a mass of 50 kg and a radius of
gyration about the pin at O of . If the 15-kg
block is moving downward at 3 , and a force of

is applied to the brake arm, determine how far
the block descends from the instant the brake is applied
until it stops. Neglect the thickness of the handle. The
coefficient of kinetic friction at the brake pad is .mk = 0.5

P = 100 N
m>s

kO = 0.23 m

mk = 0.5

kO = 0.23 m

18–6. The two tugboats each exert a constant force F on
the ship. These forces are always directed perpendicular to
the ship’s centerline. If the ship has a mass m and a radius of
gyration about its center of mass G of , determine the
angular velocity of the ship after it turns 90°. The ship is
originally at rest.

kG

•18–5. The pendulum of the Charpy impact machine has a
mass of 50 kg and a radius of gyration of . If it
is released from rest when , determine its angular
velocity just before it strikes the specimen S, .u = 90°

u = 0°
kA = 1.75 m

•18–9. The spool has a weight of 150 lb and a radius of
gyration . If a cord is wrapped around its inner
core and the end is pulled with a horizontal force of

, determine the angular velocity of the spool after
the center O has moved 10 ft to the right. The spool starts
from rest and does not slip at A as it rolls. Neglect the mass
of the cord.

P = 40 lb

kO = 2.25 ft

A

S

u

G

1.25 m

Prob. 18–5

G
d

–F

F

Prob. 18–6

0.25 m
0.15 m

O

A

B

C

P

0.75 m

0.5 m

D

Probs. 18–7/8

A

P

3 ft
2 ft

O

Prob. 18–9
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*18–12. The spool has a mass of 60 kg and a radius of
gyration . If it is released from rest, determine
how far its center descends down the smooth plane before it
attains an angular velocity of . Neglect friction
and the mass of the cord which is wound around the
central core.

•18–13. Solve Prob. 18–12 if the coefficient of kinetic
friction between the spool and plane at A is .mk = 0.2

v = 6 rad>s
kG = 0.3 m

18–11. A man having a weight of 150 lb crouches down on
the end of a diving board as shown. In this position the radius
of gyration about his center of gravity is . While
holding this position at , he rotates about his toes at A
until he loses contact with the board when . If he
remains rigid, determine approximately how many revolutions
he makes before striking the water after falling 30 ft.

u = 90°
u = 0°

kG = 1.2 ft

18–10. A man having a weight of 180 lb sits in a chair of
the Ferris wheel, which, excluding the man, has a weight of
15 000 lb and a radius of gyration . If a torque

is applied about O, determine the
angular velocity of the wheel after it has rotated 180°.
Neglect the weight of the chairs and note that the man
remains in an upright position as the wheel rotates. The
wheel starts from rest in the position shown.

M = 80(103) lb # ft
kO = 37 ft

18–14. The spool has a weight of 500 lb and a radius of
gyration of . A horizontal force of is
applied to the cable wrapped around its inner core. If the
spool is originally at rest, determine its angular velocity
after the mass center G has moved 6 ft to the left. The spool
rolls without slipping. Neglect the mass of the cable.

P = 15 lbkG = 1.75 ft

60 ftM

O

Prob. 18–10

30 ft

1.5 ft

A

u

G

Prob. 18–11

30�

G

A

0.5 m
0.3 m

Probs. 18–12/13

P

G

0.8 ft
A

2.4 ft

Prob. 18–14
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•18–17. The 6-kg lid on the box is held in equilibrium by
the torsional spring at . If the lid is forced closed,

and then released, determine its angular velocity at
the instant it opens to .u = 45°
u = 0°,

u = 60°

*18–16. If the motor M exerts a constant force of
on the cable wrapped around the reel’s outer

rim, determine the velocity of the 50-kg cylinder after  it has
traveled a distance of 2 m. Initially, the system is at rest. The
reel has a mass of 25 kg, and the radius of gyration about its
center of  mass A is .kA = 125 mm

P = 300 N

18–15. If the system is released from rest, determine the
speed of the 20-kg cylinders A and B after A has moved
downward a distance of 2 m. The differential pulley has a
mass of 15 kg with a radius of gyration about its center of
mass of .kO = 100 mm

18–18. The wheel and the attached reel have a combined
weight of 50 lb and a radius of gyration about their center of

. If  pulley B attached to the motor is subjected to
a torque of , where is in radians,
determine the velocity of the 200-lb crate after it has moved
upwards a distance of 5 ft, starting from rest. Neglect the
mass of  pulley B.

18–19. The wheel and the attached reel have a combined
weight of 50 lb and a radius of gyration about their center of

. If pulley that is attached to the motor is
subjected to a torque of , determine the
velocity of the 200-lb crate after the pulley has turned 
5 revolutions. Neglect the mass of the pulley.

M = 50 lb # ft
BkA = 6 in

ulb # ftM = 40(2 - e-0.1u)
kA = 6 in

B

A

150 mm

75 mm
O

Prob. 18–15

150 mm

75 mm
M

P � 300 NA

Prob. 18–16

0.6 m

0.5 m
A

B

C

Dk � 20 N � m/rad

u

Prob. 18–17

3 in.

7.5 in.

4.5 in.A

BM

Probs. 18–18/19
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18–23. If the 50-lb bucket is released from rest, determine
its velocity after it has fallen a distance of 10 ft.The windlass
A can be considered as a 30-lb cylinder, while the spokes are
slender rods, each having a weight of 2 lb. Neglect the
pulley’s weight.

•18–21. Determine the angular velocity of the two 10-kg
rods when if they are released from rest in the
position . Neglect friction.

18–22. Determine the angular velocity of the two 10-kg
rods when if they are released from rest in the
position . Neglect friction.u = 60°

u = 90°

u = 60°
u = 180°

*18–20. The 30-lb ladder is placed against the wall at an
angle of as shown. If it is released from rest,
determine its angular velocity at the instant just before

. Neglect friction and assume the ladder is a uniform
slender rod.
u = 0°

u = 45°

*18–24. If corner A of the 60-kg plate is subjected to a
vertical force of , and the plate is released from
rest when , determine the angular velocity of the
plate when .u = 45°

u = 0°
P = 500 N

8 ft
B

A

u

Prob. 18–20

A

B

C

3 m3 m
u

Probs. 18–21/22

4 ft

0.5 ft
0.5 ft

3 ft
B

A

C

Prob. 18–23

Prob. 18–24

1 m

1 m

P = 500 N

u

A

B
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*18–28. The 50-lb cylinder A is descending with a speed of
when the brake is applied. If wheel B must be

brought to a stop after it has rotated 5 revolutions,
determine the constant force P that must be applied to the
brake arm. The coefficient of kinetic friction between the
brake pad C and the wheel is . The wheel’s weight
is 25 lb, and the radius of gyration about its center of mass is

•18–29. When a force of  is applied to the brake
arm, the 50-lb cylinder A is descending with a speed of

. Determine the number of revolutions wheel B will
rotate before it is brought to a stop. The coefficient of
kinetic friction between the brake pad C and the wheel is

. The wheel’s weight is 25 lb, and the radius of
gyration about its center of mass is .k = 0.6 ft
mk = 0.5

20 ft>s
P = 30 lb

k = 0.6 ft.

mk = 0.5

20 ft>s

18–27. The uniform door has a mass of 20 kg and can be
treated as a thin plate having the dimensions shown. If it is
connected to a torsional spring at A, which has a stiffness of

determine the required initial twist of the
spring in radians so that the door has an angular velocity of

when it closes at after being opened at
and released from rest. Hint: For a torsional spring
when k is the stiffness and is the angle of twist.uM = ku,

u = 90°
u = 0°12 rad>s

k = 80 N # m>rad,

18–30. The 100-lb block is transported a short distance by
using two cylindrical rollers, each having a weight of 35 lb. If
a horizontal force is applied to the block,
determine the block’s speed after it has been displaced 2 ft
to the left. Originally the block is at rest. No slipping occurs.

P = 25 lb

300 mm

600 mm

O

45�

Probs. 18–25/26

A

P

C
1.5 ft

0.75 ft

0.375 ft

3 ft0.5 ft

D

B

Probs. 18–28/29

P � 25 lb

1.5 ft1.5 ft

Prob. 18–30

P

A

2 m

0.8 m

0.1 m

u

Prob. 18–27

•18–25. The spool has a mass of 100 kg and a radius of
gyration of 400 mm about its center of mass O. If it is released
from rest, determine its angular velocity after its center O has
moved down the plane a distance of 2 m.The contact surface
between  the spool and the inclined plane is smooth.

18–26. The spool has a mass of 100 kg and a radius of
gyration of 400 mm about its center of mass O. If it is
released from rest, determine its angular velocity after its
center O has moved down the plane a distance of 2 m. The
coefficient of kinetic friction between  the spool and the
inclined plane is .mk = 0.15
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18–33. The beam has a weight of 1500 lb and is being
raised to a vertical position by pulling very slowly on its
bottom end A. If the cord fails when and the beam
is essentially at rest, determine the speed of A at the instant
cord BC becomes vertical. Neglect friction and the mass of
the cords, and treat the beam as a slender rod.

u = 60°

*18–32. The assembly consists of two 15-lb slender rods
and a 20-lb disk. If the spring is unstretched when 
and the assembly is released from rest at this position,
determine the angular velocity of rod AB at the instant

. The disk rolls without slipping.u = 0°

u = 45°

18–31. The slender beam having a weight of 150 lb is
supported by two cables. If the cable at end B is cut so that
the beam is released from rest when , determine the
speed at which end A strikes the wall. Neglect friction at B.

u = 30°

18–34. The uniform slender bar that has a mass m and a
length L is subjected to a uniform distributed load ,
which is always directed perpendicular to the axis of the
bar. If the bar is released from rest from the position shown,
determine its angular velocity at the instant it has rotated
90°. Solve the problem for rotation in (a) the horizontal
plane, and (b) the vertical plane.

w0

10 ft

4 ft

A

u

B

7.5 ft

Prob. 18–31

A C

B

u

3 ft

k � 4 lb/ft

3 ft

1 ft

Prob. 18–32

12 ft

13 ft

7 ft

C

B

Au

Prob. 18–33

w0

L

O

Prob. 18–34
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18.5 Conservation of Energy

When a force system acting on a rigid body consists only of conservative
forces, the conservation of energy theorem can be used to solve a problem
that otherwise would be solved using the principle of work and energy.This
theorem is often easier to apply since the work of a conservative force is
independent of the path and depends only on the initial and final positions
of the body. It was shown in Sec. 14.5 that the work of a conservative force
can be expressed as the difference in the body’s potential energy measured
from an arbitrarily selected reference or datum.

Gravitational Potential Energy. Since the total weight of a body
can be considered concentrated at its center of gravity, the gravitational
potential energy of the body is determined by knowing the height of the
body’s center of gravity above or below a horizontal datum.

(18–15)

Here the potential energy is positive when is positive upward, since
the weight has the ability to do positive work when the body moves back
to the datum, Fig. 18–16. Likewise, if G is located below the datum 
the gravitational potential energy is negative, since the weight does
negative work when the body returns to the datum.

Elastic Potential Energy. The force developed by an elastic
spring is also a conservative force. The elastic potential energy which a
spring imparts to an attached body when the spring is stretched or
compressed from an initial undeformed position to a final
position s, Fig. 18–17, is

(18–16)

In the deformed position, the spring force acting on the body always has
the ability for doing positive work when the spring returns back to its
original undeformed position (see Sec. 14.5).

Ve = +1
2ks

2

1s = 02

1-yG2,
yG

Vg = WyG

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve � �   ks21—
2

Fig. 18–17

� yG

W

Datum

Vg � � WyG

� yG

Vg � � WyG

G

G

W

Gravitational potential energy

Fig. 18–16
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Conservation of Energy In general, if a body is subjected to
both gravitational and elastic forces, the total potential energy can be
expressed as a potential function represented as the algebraic sum

(18–17)

Here measurement of V depends upon the location of the body with
respect to the selected datum.

Realizing that the work of conservative forces can be written as a
difference in their potential energies, i.e.,
Eq. 14–16, we can rewrite the principle of work and energy for a rigid
body as

(18–18)

Here represents the work of the nonconservative forces
such as friction. If this term is zero, then

(18–19)

This equation is referred to as the conservation of mechanical energy. It
states that the sum of the potential and kinetic energies of the body
remains constant when the body moves from one position to another. It
also applies to a system of smooth, pin-connected rigid bodies, bodies
connected by inextensible cords, and bodies in mesh with other bodies.
In all these cases the forces acting at the points of contact are eliminated
from the analysis, since they occur in equal but opposite collinear pairs
and each pair of forces moves through an equal distance when the
system undergoes a displacement.

It is important to remember that only problems involving conservative
force systems can be solved by using Eq. 18–19. As stated in Sec. 14.5,
friction or other drag-resistant forces, which depend on velocity or
acceleration, are nonconservative. The work of such forces is
transformed into thermal energy used to heat up the surfaces of contact,
and consequently this energy is dissipated into the surroundings and may
not be recovered. Therefore, problems involving frictional forces can be
solved by using either the principle of work and energy written in the
form of Eq. 18–18, if it applies, or the equations of motion.

T1 + V1 = T2 + V2

1©U1–22noncons

T1 + V1 + 1©U1-22noncons = T2 + V2

1©U1–22cons = V1 - V2 ,

V = Vg + Ve

The torsional springs located at the top
of the garage door wind up as the door
is lowered. When the door is raised, the
potential energy stored in the springs is
then transferred into gravitational
potential energy of the door’s weight,
thereby making it easy to open.
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Procedure for Analysis

The conservation of energy equation is used to solve problems
involving velocity, displacement, and conservative force systems. For
application it is suggested that the following procedure be used.

Potential Energy.

• Draw two diagrams showing the body located at its initial and
final positions along the path.

• If the center of gravity, G, is subjected to a vertical displacement,
establish a fixed horizontal datum from which to measure the
body’s gravitational potential energy 

• Data pertaining to the elevation of the body’s center of gravity
from the datum and the extension or compression of any
connecting springs can be determined from the problem
geometry and listed on the two diagrams.

• The potential energy is determined from Here
which can be positive or negative, and 

which is always positive.

Kinetic Energy.

• The kinetic energy of the body consists of two parts, namely
translational kinetic energy, and rotational kinetic
energy,

• Kinematic diagrams for velocity may be useful for establishing a
relationship between and .

Conservation of Energy.

• Apply the conservation of energy equation T1 + V1 = T2 + V2 .

vvG

T = 1
2IGv

2.
T = 1

2mvG
2 ,

Ve = 1
2ks

2,Vg = WyG ,
V = Vg + Ve .

yG

Vg .
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EXAMPLE 18.6

A

G

(b)

Datum

98.1 N

30�

y1 � (0.2 sin 30�) m

1

A
B

98.1 N

2

s2 � 0

s1 � (0.4 sin 30�) m

G

B

The 10-kg rod AB shown in Fig. 18–18a is confined so that its ends
move in the horizontal and vertical slots. The spring has a stiffness of

and is unstretched when Determine the angular
velocity of AB when if the rod is released from rest when

Neglect the mass of the slider blocks.

SOLUTION

Potential Energy. The two diagrams of the rod, when it is located at
its initial and final positions, are shown in Fig. 18–18b. The datum,
used to measure the gravitational potential energy, is placed in line
with the rod when 

When the rod is in position 1, the center of gravity G is located
below the datum so its gravitational potential energy is negative.
Furthermore, (positive) elastic potential energy is stored in the spring,
since it is stretched a distance of Thus,

When the rod is in position 2, the potential energy of the rod is zero,
since the center of gravity G is located at the datum, and the spring is
unstretched, . Thus,

Kinetic Energy. The rod is released from rest from position 1, thus
and so 

In position 2, the angular velocity is and the rod’s mass center has
a velocity of Thus,

Using kinematics, can be related to as shown in Fig. 18–18c.
At the instant considered, the instantaneous center of zero velocity
(IC) for the rod is at point A; hence,
Substituting into the above expression and simplifying (or using

), we get

Conservation of Energy.

d Ans.v2 = 4.82 rad>s
506 + 56.19 J6 = 50.2667v2

26 + 506
5T16 + 5V16 = 5T26 + 5V26

T2 = 0.2667v2
2

1
2IICv2

2

1vG22 = 1rG>IC2v2 = 10.2 m2v2 .

V21vG22
= 1

2110 kg21vG222 + 1
2 C 1

12110 kg210.4 m22 Dv2
2

T2 = 1
2m1vG222 + 1

2IGv2
2

1vG22 .
V2

T1 = 0

V1 = 0,1vG21 =

V2 = 0

s2 = 0

= -198.1 N)10.2 sin 30° m2 + 1
21800 N>m210.4 sin 30° m22 = 6.19 J

V1 = -Wy1 + 1
2ks1

2

s1 = 10.4 sin 30°2 m.

u = 0°.

u = 30°.
u = 0°,

u = 0°.k = 800 N>m

0.2 m

0.2 m

A

B

G

k � 800 N/m

(a)

u

(c)

B

G

0.2 m

IC
rG/IC

(vG)2

V2

Fig. 18–18
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EXAMPLE 18.7

The wheel shown in Fig. 18–19a has a weight of 30 lb and a radius of
gyration of . It is attached to a spring which has a stiffness

and an unstretched length of 1 ft. If the disk is released
from rest in the position shown and rolls without slipping, determine
its angular velocity at the instant G moves 3 ft to the left.

SOLUTION
Potential Energy. Two diagrams of the wheel, when it at the initial and
final positions, are shown in Fig. 18–19b. A gravitational datum is not
needed here since the weight is not displaced vertically. From the
problem geometry the spring is stretched 

in the initial position, and in the final position.
Hence,

Kinetic Energy. The disk is released from rest and so 
Therefore,

Since the instantaneous center of zero velocity is at the ground,
Fig. 18–19c, we have

Conservation of Energy.

d Ans.

NOTE: If the principle of work and energy were used to solve this
problem, then the work of the spring would have to be determined
by considering both the change in magnitude and direction of the
spring force.

v2 = 4.04 rad>s
506 + 516 J6 = 50.4297v2

26 + 59 J6
5T16 + 5V16 = 5T26 + 5V26

= 0.4297v2
2

=
1
2
c a 30 lb

32.2 ft>s2 b10.6 ft22 + a 30 lb

32.2 ft>s2 b(0.75 ft)2 dv2
2

T2 =
1
2
IICv2

2

T1 = 0

V1 = 0.
1vG21 = 0,

V2 = 1
2ks2

2 = 1
212 lb>ft213 ft22 = 9 J

V1 = 1
2ks1

2 = 1
212 lb>ft214 ft22 = 16 J

s2 = 14 - 12 = 3 ft

s1 = A232 + 42 - 1 B = 4 ft

k = 2 lb>ft kG
= 0.6 ft

3 ft

G
0.75 ft

4 ft

k � 2 lb/ft

(a)

(b)

30 lb

s1 � 4 ft
s2 � 3 ft

2 1

30 lb

(c)

IC

0.75 ft

(vG)2

V2

Fig. 18–19
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EXAMPLE 18.8

The 10-kg homogeneous disk shown in Fig. 18–20a is attached to a
uniform 5-kg rod AB. If the assembly is released from rest when

determine the angular velocity of the rod when 
Assume that the disk rolls without slipping. Neglect friction along the
guide and the mass of the collar at B.

SOLUTION

Potential Energy. Two diagrams for the rod and disk, when they are
located at their initial and final positions, are shown in Fig. 18–20b. For
convenience the datum passes through point A.

When the system is in position 1, only the rod’s weight has positive
potential energy. Thus,

When the system is in position 2, both the weight of the rod and the
weight of the disk have zero potential energy. Why? Thus,

Kinetic Energy. Since the entire system is at rest at the initial
position,

In the final position the rod has an angular velocity and its mass
center has a velocity Fig. 18–20c. Since the rod is fully extended
in this position, the disk is momentarily at rest, so and

For the rod can be related to from the
instantaneous center of zero velocity, which is located at point A,
Fig. 18–20c. Hence, or Thus,

Conservation of Energy.

b Ans.

NOTE: We can also determine the final kinetic energy of the rod using
.T2 = 1

2IICv2
2

1vr22 = 6.52 rad>s
506 + 512.74 J6 = 50.31vR2226 + 506
5T16 + 5V16 = 5T26 + 5V26

= 0.31vr222
=

1
2
15 kg2[10.3 m21vr22]2 +

1
2
c 1
12
15 kg210.6 m22 d1vr222 + 0 + 0

T2 =
1
2
mr1vG222 +

1
2
IG1vr222 +

1
2
md1vA222 +

1
2
IA1vd222

1vG22 = 0.31vr22 .1vG22 = rG>IC1vr22
1Vr221vG221vA22 = 0.
1Vd22 = 0

1vG22 ,
1Vr22

T1 = 0

V2 = 0

V1 = Wry1 = 149.05 N210.3 sin 60° m2 = 12.74 J

u = 0°.u = 60°,

(a)

0.1 m

G

A

B

0.6 m

u

(b)

60�

A

49.05 N98.1 N
98.1 N

Datum

49.05 N

G

y1 � (0.3 sin 60�) m

1 2
GA

(c)

G (vG)2

A(IC) rG/IC
(Vd)2 � 0

(Vr)2

Fig. 18–20



k � 80 N/m
1.5 m

2 m

A

O
u

1.5 m

B

A

k � 300 N/m

u

A

k � 100 N/m

B

2 m

2 m

1 m

u

v
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FUNDAMENTAL PROBLEMS

F18–9

k � 150 N/m

3 m

A

O
u

F18–10

F18–11

F18–12

F18–7

0.3 m
O

G

u

F18–8

O

0.4 m

0.2 m

30�

F18–10. The rod is released from rest when 
Determine the angular velocity of the rod when 
The spring is unstretched when u = 0°.

u = 90°.
u = 0°.30-kg

F18–9. The rod is released from rest when
Determine its angular velocity when 

The spring remains vertical during the motion and is
unstretched when u = 0°.

u = 45°.u = 0°.
OA60-kg

F18–7. If the disk is released from rest when 
determine its angular velocity when u = 90°.

u = 0°,30-kg

F18–12. The rod is released from rest when 
Determine its angular velocity when The spring
has an unstretched length of 0.5 m.

u = 90°.
u = 0°.20-kg

F18–8. The reel has a radius of gyration about its
center of If it is released from rest,
determine its angular velocity when its center has
traveled down the smooth inclined plane.6 m

O
kO = 300 mm.O

50-kg

F18–11. The rod is released from rest when 
Determine the angular velocity of the rod when The
spring is unstretched when u = 45°.

u = 0°.
u = 45°.30-kg
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PROBLEMS

18–42. A chain that has a negligible mass is draped over the
sprocket which has a mass of 2 kg and a radius of gyration of

. If the 4-kg block A is released from rest from
the position , determine the angular velocity of the
sprocket at the instant .

18–43. Solve Prob. 18–42 if the chain has a mass per unit
length of 0.8 . For the calculation neglect the portion of
the chain that wraps over the sprocket.

kg>m

s = 2 m
s = 1 m

kO = 50 mm

18–35. Solve Prob. 18–5 using the conservation of energy
equation.

*18–36. Solve Prob. 18–12 using the conservation of
energy equation.

•18–37. Solve Prob. 18–32 using the conservation of
energy equation.

18–38. Solve Prob. 18–31 using the conservation of energy
equation.

18–39. Solve Prob. 18–11 using the conservation of energy
equation.

*18–40. At the instant shown, the 50-lb bar rotates
clockwise at 2 . The spring attached to its end always
remains vertical due to the roller guide at C. If the spring
has an unstretched length of 2 ft and a stiffness of

, determine the angular velocity of the bar the
instant it has rotated 30° clockwise.

•18–41. At the instant shown, the 50-lb bar rotates
clockwise at 2 . The spring attached to its end always
remains vertical due to the roller guide at C. If the spring has
an unstretched length of 2 ft and a stiffness of ,
determine the angle , measured from the horizontal, to
which the bar rotates before it momentarily stops.

u

k = 12 lb>ft
rad>s

k = 6 lb>ft

rad>s

*18–44. The system consists of 60-lb and 20-lb blocks A and
B, respectively, and 5-lb pulleys C and D that can be treated
as thin disks. Determine the speed of block A after block B
has risen 5 ft, starting from rest. Assume that the cord does
not slip on the pulleys, and neglect the mass of the cord.

A

B

k

C

6 ft

4 ft

2 rad/s

Probs. 18–40/41

Probs. 18–42/43

O

s � 1 m

100 mm

A

0.5 ft

A

C

D
0.5 ft

B

Prob. 18–44
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0.8 ft

3 ft

A

u

C

B

Probs. 18–45/46

1 ft 1 ft
0.25 ft

k � 2 lb/ft

C

B D
A

1 ft

Prob. 18–47

0.5 m

k

A

B

C D

2 m

1 m

2 m

Prob. 18–49

18–47. The pendulum consists of a 2-lb rod BA and a 6-lb
disk.The spring is stretched 0.3 ft when the rod is horizontal
as shown. If the pendulum is released from rest and rotates
about point D, determine its angular velocity at the instant
the rod becomes vertical.The roller at C allows the spring to
remain vertical as the rod falls.

•18–45. The system consists of a 20-lb disk A, 4-lb slender
rod BC, and a 1-lb smooth collar C. If the disk rolls without
slipping, determine the velocity of the collar at the instant
the rod becomes horizontal, i.e., . The system is
released from rest when .

18–46. The system consists of a 20-lb disk A, 4-lb slender
rod BC, and a 1-lb smooth collar C. If the disk rolls without
slipping, determine the velocity of the collar at the instant

. The system is released from rest when .u = 45°u = 30°

u = 45°
u = 0°

3 m 4 m

C
A

B

Prob. 18–48

*18–48. The uniform garage door has a mass of 150 kg and is
guided along smooth tracks at its ends. Lifting is done using
the two springs, each of which is attached to the anchor
bracket at A and to the counterbalance shaft at B and C. As
the door is raised, the springs begin to unwind from the shaft,
thereby assisting the lift. If each spring provides a torsional
moment of , where is in radians,
determine the angle at which both the left-wound and
right-wound spring should be attached so that the door is
completely balanced by the springs, i.e., when the door is in
the vertical position and is given a slight force upwards, the
springs will lift the door along the side tracks to the horizontal
plane with no final angular velocity. Note: The elastic potential
energy of a torsional spring is , where and
in this case  .k = 0.7 N # m>rad

M = kuVe = 1
2ku

2

u0

uM = (0.7u) N # m

•18–49. The garage door CD has a mass of 50 kg and can be
treated as a thin plate. Determine the required unstretched
length of each of the two side springs when the door is in the
open position, so that when the door falls freely from the open
position it comes to rest when it reaches the fully closed
position, i.e., when AC rotates 180°. Each of the two side
springs has a stiffness of . Neglect the mass of
the side bars AC.

k = 350 N>m
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*18–52. The 50-lb square plate is pinned at corner A and
attached to a spring having a stiffness of . If the
plate is released from rest when , determine its
angular velocity when . The spring is unstretched
when .u = 0°

u = 90°
u = 0°
k = 20 lb>ft

18–51. The 30 kg pendulum has its mass center at G and a
radius of gyration about point G of . If it is
released from rest when , determine its angular
velocity at the instant . Spring AB has a stiffness of

and is unstretched when .u = 0°k = 300 N>m
u = 90°

u = 0°
kG = 300 mm

18–50. The uniform rectangular door panel has a mass of
25 kg and is held in equilibrium above the horizontal at the
position by rod BC. Determine the required
stiffness of the torsional spring at A, so that the door’s
angular velocity becomes zero when the door reaches the
closed position once the supporting rod BC is
removed. The spring is undeformed when  .u = 60°

(u = 0°)

u = 60°

•18–53. A spring having a stiffness of is
attached to the end of the 15-kg rod, and it is unstretched
when . If the rod is released from rest when ,
determine its angular velocity at the instant . The
motion is in the vertical plane.

u = 30°
u = 0°u = 0°

k = 300 N>m

A

k

B

C

1.2 m

u � 60�

Prob. 18–50

B

0.35 m

0.6 m

0.1 m

k � 300 N/m

A

G

O
u

Prob. 18–51

Prob. 18–52

k � 300 N/m

B

A

0.6 m

u

Prob. 18–53

1 ft

1 ft

k � 20 lb/ft

1 ft

A

B

C

u
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400 mm

k � 600 N/m

200 mm

200 mm

300 mm

C

B

A

u

Prob. 18–54

*18–56. Rods AB and BC have weights of 15 lb and 30 lb,
respectively. Collar C, which slides freely along the smooth
vertical guide, has a weight of 5 lb. If the system is released
from rest when , determine the angular velocity of
the rods when . The attached spring is unstretched
when .u = 0°

u = 90°
u = 0°

18–55. The 50-kg rectangular door panel is held in the
vertical position by rod CB. When the rod is removed, the
panel closes due to its own weight. The motion of the panel
is controlled by a spring attached to a cable that wraps
around the half pulley. To reduce excessive slamming, the
door panel’s angular velocity is limited to at the
instant of closure. Determine the minimum stiffness k of
the spring if the spring is unstretched when the panel is in
the vertical position. Neglect the half pulley’s mass.

0.5 rad>s

18–54. If the 6-kg rod is released from rest at ,
determine the angular velocity of the rod at the instant

. The attached spring has a stiffness of ,
with an unstretched length of 300 mm.

k = 600 N>mu = 0°

u = 30°

•18–57. Determine the stiffness k of the torsional spring at
A, so that if the bars are released from rest when ,
bar AB has an angular velocity of 0.5 rad/s at the closed
position, . The spring is uncoiled when . The
bars have a mass per unit length of .

18–58. The torsional spring at A has a stiffness of
and is uncoiled when . Determine

the angular velocity of the bars, AB and BC, when , if
they are released from rest at the closed position, .
The bars have a mass per unit length of .10 kg>m

u = 90°
u = 0°

u = 0°k = 900 N # m>rad

10 kg>m
u = 0°u = 90°

u = 0°

k 

1 m

0.15 m

1.2 m

C

B

A

Prob. 18–55

1.5 ft

3 ft

A

B

C

k � 20 lb/ft

u

Prob. 18–56

B

A

k

C

3 m 4 m

u

Probs. 18–57/58
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B

C

A

G2

G1

16 m

4 m

u

Prob. 18–59

•18–61. The motion of the uniform 80-lb garage door is
guided at its ends by the track. Determine the required
initial stretch in the spring when the door is open, , so
that when it falls freely it comes to rest when it just reaches
the fully closed position, . Assume the door can be
treated as a thin plate, and there is a spring and pulley
system on each of the two sides of the door.

18–62. The motion of the uniform 80-lb garage door is
guided at its ends by the track. If it is released from rest at

, determine the door’s angular velocity at the instant
. The spring is originally stretched 1 ft when the

door is held open, . Assume the door can be treated
as a thin plate, and there is a spring and pulley system on
each of the two sides of the door.

u = 0°
u = 30°
u = 0°

u = 90°

u = 0°

18–60. The assembly consists of a 3-kg pulley A and 10-kg
pulley B. If a 2-kg block is suspended from the cord,
determine the block’s speed after it descends 0.5 m starting
from rest. Neglect the mass of the cord and treat the pulleys
as thin disks. No slipping occurs.

18–59. The arm and seat of the amusement-park ride have
a mass of 1.5 Mg, with the center of mass located at point .
The passenger seated at A has a mass of 125 kg, with the
center of mass located at If the arm is raised to a position
where and released from rest, determine the  speed
of the passenger at the instant .The arm has a radius of
gyration of about its center of mass . Neglect
the size of the passenger.

G1kG1 = 12 m
u = 0°

u = 150°
G2

G1

18–63. The 500-g rod AB rests along the smooth inner
surface of a hemispherical bowl. If the rod is released from
rest from the position shown, determine its angular velocity
at the instant it swings downward and becomes horizontal.

k � 9 lb/ft

8 ft

8 ft
A

C

Bu

Probs. 18–61/62

A

B

200 mm

200 mm

Prob. 18–63

A
B

30 mm

100 mm

Prob. 18–60
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4 ft

4 ft

A
C

k � 5 lb/ft

B

u

Probs. 18–64/65

B

A

3 ft

0.5 ft 0.5 ft

3 ft

C

uu

Probs. 18–66/67

*18–68. The uniform window shade AB has a total weight of
0.4 lb.When it is released, it winds up around the spring-loaded
core O. Motion is caused by a spring within the core, which is
coiled so that it exerts a torque , where

is in radians, on the core. If the shade is released from rest,
determine the angular velocity of the core at the instant the
shade is completely rolled up, i.e., after 12 revolutions. When
this occurs, the spring becomes uncoiled and the radius of
gyration of the shade about the axle at O is
Note: The elastic potential energy of the torsional spring is

, where and .k = 0.3(10-3) lb # ft>radM = kuVe = 1
2ku

2

kO = 0.9 in.

u

M = 0.3(10-3)u lb # ft

18–66. The assembly consists of two 8-lb bars which are
pin connected to the two 10-lb disks. If the bars are released
from rest when determine their angular velocities
at the instant Assume the disks roll without
slipping.

18–67. The assembly consists of two 8-lb bars which are
pin connected to the two 10-lb disks. If the bars are released
from rest when determine their angular velocities
at the instant Assume the disks roll without
slipping.

u = 30°.
u = 60°,

u = 0°.
u = 60°,

*18–64. The 25-lb slender rod AB is attached to spring BC
which has an unstretched length of 4 ft. If the rod is released
from rest when determine its angular velocity at
the instant 

•18–65. The 25-lb slender rod AB is attached to spring BC
which has an unstretched length of 4 ft. If the rod is released
from rest when determine the angular velocity of
the rod the instant the spring becomes unstretched.

u = 30°,

u = 90°.
u = 30°,

18–69. When the slender 10-kg bar AB is horizontal it is at
rest and the spring is unstretched. Determine the stiffness k
of the spring so that the motion of the bar is momentarily
stopped when it has rotated clockwise 90°.

A

B
M

O O

3 ft

Prob. 18–68

kA B C

1.5 m 1.5 m

Prob. 18–69
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CONCEPTUAL PROBLEMS

P18–3. The operation of this garage door is assisted using
two springs and side members which are pinned
at Assuming the springs are unstretched when the door is
in the horizontal (open) position and is vertical,
determine each spring stiffness so that when the door falls
to the vertical (closed) position, it will slowly come to a stop.
Use appropriate numerical values to explain your result.

k
ABCD

C.
BCD,AB

P18–2. Two torsional springs, are used to assist in
opening and closing the hood of this truck. Assuming the
springs are uncoiled when the hood is opened,
determine the stiffness of each spring so that
the hood can easily be lifted, i.e., practically no force
applied to it, when it is closed. Use appropriate numerical
values to explain your result.

k (N # m>rad)
(u = 0°)

M = ku,

P18–1. The blade on the band saw wraps around the two
large wheels and When switched on, an electric
motor turns the small pulley at that then drives the
larger pulley which is connected to and turns with it.
Explain why it is a good idea to use pulley , and also use
the larger wheels and Use appropriate numerical
values to explain your answer.

B.A
D

AD,
C

B.A

P18–4. Determine the counterweight of needed to balance
the weight of the bridge deck when Show that this
weight will maintain equilibrium of the deck by considering
the potential energy of the system when the deck is in the
arbitrary position Both the deck and are horizontal
when Neglect the weights of the other members. Use
appropriate numerical values to explain this result.

u = 0°.
ABu.

u = 0°.
A

A

B

C

D

P18–1

P18–2

A

B

D

C

P18–3

A

B

u

P18–4
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CHAPTER REVIEW

Kinetic Energy

The kinetic energy of a rigid body that
undergoes planar motion can be referenced
to its mass center. It includes a scalar sum of
its translational and rotational kinetic
energies.

Rotation About a Fixed Axis

or

T = 1
2 IOv

2

T = 1
2mvG

2 + 1
2 IGv

2

Translation

T = 1
2mvG

2

vG � v

G

Translation

v

vG

G

O

Rotation About a Fixed Axis

V

vG

G

General Plane Motion

V

General Plane Motion

or

T = 1
2IICv

2

T = 1
2mvG

2 + 1
2 IGv

2
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Work of a Force and a Couple Moment

A force does work when it undergoes a
displacement ds in the direction of the
force. In particular, the frictional and
normal forces that act on a cylinder or any
circular body that rolls without slipping will
do no work, since the normal force does
not undergo a displacement and the
frictional force acts on successive points on
the surface of the body.

Constant magnitude

UM = M1u2 - u12

UM =
L

u2

u1

M du

s

F

F
s

F

F

s

Fc

Fc

Fc cos u

Fc cos u

u

u

k

s

Fsk

Unstretched
position of
spring, s � 0

M

u

W

W

G

G

�y

s

UF =
L
F cos u ds

Constant Force

UFC = (Fc cos u)s

Spring

U = -
1
2
k s2

Weight

UW = -W¢y
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Principle of Work and Energy

Problems that involve velocity, force, and
displacement can be solved using the
principle of work and energy. The kinetic
energy is the sum of both its rotational and
translational parts. For application, a free-
body diagram should be drawn in order to
account for the work of all of the forces and
couple moments that act on the body as it
moves along the path.

T1 = ©U1-2 = T2

Conservation of Energy

If a rigid body is subjected only to
conservative forces, then the conservation-
of-energy equation can be used to solve the
problem. This equation requires that the
sum of the potential and kinetic energies of
the body remain the same at any two points
along the path.

where V = Vg + Ve

T1 + V1 = T2 + V2

The potential energy is the sum of the
body’s gravitational and elastic potential
energies.The gravitational potential energy
will be positive if the body’s center of
gravity is located above a datum. If it is
below the datum, then it will be negative.
The elastic potential energy is always
positive, regardless if the spring is stretched
or compressed.

� yG

W

Datum

� yG

G

G

W

Gravitational potential energy

Vg �� WyG

Vg � WyG

s

Fs

k

Unstretched
position of
spring, s � 0

Elastic potential energy

Ve � ks2
1
2



The docking of the space shuttle to the international space station requires application
of impulse and momentum principles to accurately predict their orbital motion and
proper orientation.



Planar Kinetics of a
Rigid Body: Impulse
and Momentum
CHAPTER OBJECTIVES

• To develop formulations for the linear and angular momentum of 
a body.

• To apply the principles of linear and angular impulse and
momentum to solve rigid-body planar kinetic problems that involve
force, velocity, and time.

• To discuss application of the conservation of momentum.

• To analyze the mechanics of eccentric impact.

19.1 Linear and Angular Momentum

In this chapter we will use the principles of linear and angular impulse
and momentum to solve problems involving force, velocity, and time as
related to the planar motion of a rigid body. Before doing this, we will first
formalize the methods for obtaining a body’s linear and angular
momentum, assuming the body is symmetric with respect to an inertial
x–y reference plane.

Linear Momentum. The linear momentum of a rigid body is
determined by summing vectorially the linear momenta of all the
particles of the body, i.e., Since (see Sec. 15.2)
we can also write

(19–1)

This equation states that the body’s linear momentum is a vector
quantity having a magnitude which is commonly measured in units
of or and a direction defined by the velocity of the
body’s mass center.

vGslug #  ft>skg #  m>s mvG,

L = mvG

©mivi = mvGL = ©mivi.

19
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Angular Momentum. Consider the body in Fig. 19–1a, which is
subjected to general plane motion. At the instant shown, the arbitrary
point P has a known velocity and the body has an angular velocity

. Therefore the velocity of the ith particle of the body is

The angular momentum of this particle about point P is equal to the
“moment” of the particle’s linear momentum about P, Fig. 19–1a. Thus,

Expressing in terms of and using Cartesian vectors, we have

Letting and integrating over the entire mass m of the body, we
obtain

Here represents the angular momentum of the body about an axis
(the z axis) perpendicular to the plane of motion that passes through
point P. Since and  the integrals for the first
and second terms on the right are used to locate the body’s center of
mass G with respect to P, Fig. 19–1b.Also, the last integral represents the
body’s moment of inertia about point P. Thus,

(19–2)

This equation reduces to a simpler form if P coincides with the mass
center G for the body,* in which case Hence,x = y = 0.

HP = -ym1vP2x + xm1vP2y + IPv

xm = 1x dmym = 1y dm

HP

HP = - a
Lm
y dmb1vP2x + a

Lm
x dmb1vP2y + a

Lm
r2 dmbv

mi: dm

1HP2i = -miy1vP2x + mix1vP2y + mivr2
1HP2ik = mi1xi + yj2 * [1vP2x i + 1vP2y j + vk * 1xi + yj2]

vPvi

1HP2i = r * mivi

vi = vP + vi>P = vP + V * r

V

vP,

y

xP

vP

r

i
vi

y

x

(a)

V

y

xP

vP

G

(b)

vG

_
r

V

_
x

_
y

Fig. 19–1

*It also reduces to the same simple form, if point P is a fixed point (see
Eq. 19–9) or the velocity of P is directed along the line PG.

HP = IPv,
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(19–3)

Here the angular momentum of the body about G is equal to the product
of the moment of inertia of the body about an axis passing through G
and the body’s angular velocity. Realize that is a vector quantity
having a magnitude which is commonly measured in units of

or and a direction defined by which is always
perpendicular to the plane of motion.

Equation 19–2 can also be rewritten in terms of the x and y
components of the velocity of the body’s mass center, and 
and the body’s moment of inertia Since G is located at coordinates
( ), then by the parallel-axis theorem,
Substituting into Eq. 19–2 and rearranging terms, we have

(19–4)

From the kinematic diagram of Fig. 19–1b, can be expressed in terms
of as

Carrying out the cross product and equating the respective i and j
components yields the two scalar equations

Substituting these results into Eq. 19–4 yields

a (19–5)

As shown in Fig. 19–1c, this result indicates that when the angular
momentum of the body is computed about point P, it is equivalent to the
moment of the linear momentum , or its components and

, about P plus the angular momentum Using these results,
we will now consider three types of motion.

IGV.m1vG2y
m1vG2xmvG

HP = -ym1vG2x + xm1vG2y + IGv+21

1vG2y = 1vP2y + xv

1vG2x = 1vP2x - yv

1vG2x i + 1vG2y j = 1vP2x i + 1vP2y j + vk * 1xi + yj2
vG = vP + V * r

vP
vG

HP = ym[-1vP2x + yv] + xm[1vP2y + xv] + IGv

IP = IG + m1x2 + y22.yx,
IG.

1vG2y,1vG2x

V,slug # ft2>s,kg # m2>s
IGv,

HG

HG = IGv

y

xP

G
_
y

_
x

(c)

m(vG)y

HG � IGV

L � mvG

m(vG)x

Body momentum
diagram

Fig. 19–1 (cont.)
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Translation. When a rigid body is subjected to either rectilinear or
curvilinear translation, Fig. 19–2a, then and its mass center has a
velocity of . Hence, the linear momentum, and the angular
momentum about G, become

(19–6)

If the angular momentum is computed about some other point A, the
“moment” of the linear momentum L must be found about the point.
Since d is the “moment arm” as shown in Fig. 19–2a, then in accordance
with Eq. 19–5, d.

Rotation About a Fixed Axis. When a rigid body is rotating
about a fixed axis, Fig. 19–2b, the linear momentum, and the angular
momentum about G, are

(19–7)

It is sometimes convenient to compute the angular momentum about
point O. Noting that L (or ) is always perpendicular to we have

a (19–8)

Since this equation can be written as 
Using the parallel-axis theorem,* 

(19–9)

For the calculation, then, either Eq. 19–8 or 19–9 can be used.

HO = IOv

HO = 1IG + mrG2 2v.vG = rGv,

+2 HO = IGv + rG1mvG21
rG,vG

L = mvG
HG = IGv

HA = 1d21mvG2

L = mvG
HG = 0

vG = v
V = 0

*The similarity between this derivation and that of Eq. 17–16 and Eq. 18–5
should be noted.Also note that the same result can be obtained from Eq. 19–2

by selecting point P at O, realizing that 1vO2x = 1vO2y = 0.
AT = 1

2 IOv
2 B 1©MO = IOa2

d

G

L � mvG

vG � vA

Translation

(a)

G

L � mvG

HG � IGV

O

Rotation about a fixed axis

(b)

rG

V

Fig. 19–2
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General Plane Motion When a rigid body is subjected to general
plane motion, Fig. 19–2c, the linear momentum, and the angular
momentum about G, become

(19–10)

If the angular momentum is computed about point A, Fig. 19–2c, it is
necessary to include the moment of L and about this point. In
this case,

a

Here d is the moment arm, as shown in the figure.
As a special case, if point A is the instantaneous center of zero velocity

then, like Eq. 19–9, we can write the above equation as 

(19–11)

where is the moment of inertia of the body about the IC. See Prob. 19–2.IIC

HIC = IICv

+2 HA = IGv + 1d21mvG21
HG

L = mvG
HG = IGv

HG � IGV

L � mvG

G

A

d

General plane motion

(c)

Fig 19–2

As the pendulum swings downward, its angular
momentum about point O can be determined by
computing the moment of and about O.
This is Since then 
HO = IGv + m1vd2d = 1IG + md22v = IOv.

vG = vd,HO = IGv + 1mvG2d.
mvGIGV

O

G

d

IGV

mvG
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At a given instant the 5-kg slender bar has the motion shown in
Fig. 19–3a. Determine its angular momentum about point G and
about the IC at this instant.

EXAMPLE 19.1

G

(a)

30�

4 m

B

A

vA � 2 m/s

SOLUTION

Bar. The bar undergoes general plane motion. The IC is established
in Fig. 19–3b, so that 

Thus,

vG = 10.5774 rad>s212 m2 = 1.155 m>s
v =

2 m>s
4 m cos 30°

= 0.5774 rad>s

c bAns.+2HG = IGv = C 1
1215 kg214 m22 D 10.5774 rad>s2 = 3.85 kg # m2>s1

G

A

B

(b)

2 m/s

2 m

2 m

2 m

4 m cos 30�IC

vG
vB 30�

30� 30�

30�

V

Fig. 19–3

Adding and the moment of about the IC yields

c

b Ans.

We can also use

c

b Ans.= 15.4 kg # m2>s
= C 1

12 (5 kg)(4 m)2 + (5 kg)(2 m)2 D  (0.5774 rad>s)

+)HIC = IICv1

= 15.4 kg # m2>s
= C 1

1215 kg214 m22 D 10.5774 rad>s2 + 12 m215 kg211.155 m>s2
+2HIC = IGv + d1mvG21

mvGIGv
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19.2 Principle of Impulse and
Momentum

Like the case for particle motion, the principle of impulse and momentum
for a rigid body can be developed by combining the equation of motion
with kinematics. The resulting equation will yield a direct solution to
problems involving force, velocity, and time.

Principle of Linear Impulse and Momentum. The equation
of translational motion for a rigid body can be written as

Since the mass of the body is constant,

Multiplying both sides by dt and integrating from to
yields

This equation is referred to as the principle of linear impulse and
momentum. It states that the sum of all the impulses created by the
external force system which acts on the body during the time interval to

is equal to the change in the linear momentum of the body during this
time interval, Fig. 19–4.

Principle of Angular Impulse and Momentum. If the body
has general plane motion then Since the
moment of inertia is constant,

Multiplying both sides by dt and integrating from to
gives

(19–12)

In a similar manner, for rotation about a fixed axis passing through
point O, Eq. 17–16 when integrated becomes

(19–13)

Equations 19–12 and 19–13 are referred to as the principle of angular
impulse and momentum. Both equations state that the sum of the angular
impulses acting on the body during the time interval to is equal to the
change in the body’s angular momentum during this time interval.

t2t1

©
L

t2

t1

MO dt = IOv2 - IOv1

1©MO = IOa2

©
L

t2

t1

MG dt = IGv2 - IGv1

v = v2t = t2,
v = v1t = t1,

©MG =
d

dt
1IGv2

©MG = IGa = IG1dv>dt2.

t2

t1

©
L

t2

t1

F dt = m1vG22 - m1vG21

vG = 1vG22t = t2,
vG = 1vG21t = t1,

©F =
d

dt
1mvG2

©F = maG = m1dvG>dt2.

m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

=

IGV2

m(vG)2

Fig. 19–4
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To summarize these concepts, if motion occurs in the x–y plane, the
following three scalar equations can be written to describe the planar
motion of the body.

(19–14)

The terms in these equations can be shown graphically by drawing a set
of impulse and momentum diagrams for the body, Fig. 19–4. Note that the
linear momentum is applied at the body’s mass center, Figs. 19–4a
and 19–4c; whereas the angular momentum is a free vector, and
therefore, like a couple moment, it can be applied at any point on the
body. When the impulse diagram is constructed, Fig. 19–4b, the forces F
and moment M vary with time, and are indicated by the integrals.
However, if F and M are constant integration of the impulses yields

and respectively. Such is the case for the body’s
weight W, Fig. 19–4b.

Equations 19–14 can also be applied to an entire system of connected
bodies rather than to each body separately. This eliminates the need to
include interaction impulses which occur at the connections since they
are internal to the system. The resultant equations may be written in
symbolic form as

(19–15)

As indicated by the third equation, the system’s angular momentum and
angular impulse must be computed with respect to the same reference
point O for all the bodies of the system.

aa syst. angular
impulse

b
O11-22

= aa syst. angular
momentum

b
O2

aa syst. angular
momentum

b
O1

+

aa syst. linear
momentum

b
y1

+ aa syst. linear
impulse

b
y11-22

= aa syst. linear
momentum

b
y2

aa syst. linear
momentum

b
x1

+ aa syst. linear
impulse

b
x11-22

= aa syst. linear
momentum

b
x2

M1t2 - t12,F1t2 - t12

IGV
mvG

IGv1 + ©
L

t2

t1

MG dt = IGv2

m1vGy21 + ©
L

t2

t1

Fy dt = m1vGy22

m1vGx21 + ©
L

t2

t1

Fx dt = m1vGx22m(vG)1

IGV1

G

Initial
momentum
diagram

(a)

F1 dt

G

M1 dt

W(t2 � t1)

F3 dt
F2 dt

Impulse
diagram

(b)

�
t2

t1
�

t2

t1
�

t2

t1
� t2

t1
�

G

Final
momentum
diagram

(c)

=

IGV2

m(vG)2

Fig. 19–4 (repeated)
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Procedure For Analysis

Impulse and momentum principles are used to solve kinetic
problems that involve velocity, force, and time since these terms are
involved in the formulation.

Free-Body Diagram.
• Establish the x, y, z inertial frame of reference and draw the free-

body diagram in order to account for all the forces and couple
moments that produce impulses on the body.

• The direction and sense of the initial and final velocity of the
body’s mass center, and the body’s angular velocity should
be established. If any of these motions is unknown, assume that the
sense of its components is in the direction of the positive inertial
coordinates.

• Compute the moment of inertia or 
• As an alternative procedure, draw the impulse and momentum

diagrams for the body or system of bodies. Each of these diagrams
represents an outlined shape of the body which graphically accounts
for the data required for each of the three terms in Eqs. 19–14 or
19–15, Fig. 19–4. These diagrams are particularly helpful in order to
visualize the “moment” terms used in the principle of angular
impulse and momentum, if application is about the IC or another
point other than the body’s mass center G or a fixed point O.

Principle of Impulse and Momentum.
• Apply the three scalar equations of impulse and momentum.
• The angular momentum of a rigid body rotating about a fixed

axis is the moment of plus about the axis. This is equal
to where is the moment of inertia of the body
about the axis.

• All the forces acting on the body’s free-body diagram will create
an impulse; however, some of these forces will do no work.

• Forces that are functions of time must be integrated to obtain the
impulse.

• The principle of angular impulse and momentum is often used to
eliminate unknown impulsive forces that are parallel or pass
through a common axis, since the moment of these forces is zero
about this axis.

Kinematics.
• If more than three equations are needed for a complete solution,

it may be possible to relate the velocity of the body’s mass center
to the body’s angular velocity using kinematics. If the motion
appears to be complicated, kinematic (velocity) diagrams may be
helpful in obtaining the necessary relation.

IOHO = IOv,
IGVmvG

IO.IG

VvG,
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The 20-lb disk shown in Fig. 19–5a is acted upon by a constant couple
moment of and a force of 10 lb which is applied to a cord
wrapped around its periphery. Determine the angular velocity of the
disk two seconds after starting from rest. Also, what are the force
components of reaction at the pin?

SOLUTION
Since angular velocity, force, and time are involved in the problems,
we will apply the principles of impulse and momentum to the
solution.

Free-Body Diagram. Fig. 19–5b. The disk’s mass center does not
move; however, the loading causes the disk to rotate clockwise.

The moment of inertia of the disk about its fixed axis of rotation is

Principle of Impulse and Momentum.

c

Solving these equations yields

Ans.

Ans.

b Ans.v2 = 132 rad>s
Ay = 30 lb

Ax = 0

 0 + 4 lb # ft12 s2 + [10 lb12 s2]10.75 ft2 = 0.1747v2

IAv1 + ©
L

t2

t1

MA dt = IAv2+21
 0 + Ay12 s2 - 20 lb12 s2 - 10 lb12 s2 = 0

m1vAy21 + ©
L

t2

t1

Fy dt = m1vAy221+ c2
 0 + Ax12 s2 = 0

m1vAx21 + ©
L

t2

t1

Fx dt = m1vAx221:+ 2

IA =
1
2
mr2 =

1
2
a 20 lb

32.2 ft>s2 b10.75 ft22 = 0.1747 slug # ft2

4 lb # ft

EXAMPLE 19.2

0.75 ft

M � 4 lb � ft

F � 10 lb
(a)

A

Ax

Ay

0.75 ftA

20 lb

4 lb � ft

10 lb
 (b)

y

x

V

Fig. 19–5
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EXAMPLE 19.3

The 100-kg spool shown in Fig. 19–6a has a radius of gyration
A cable is wrapped around the central hub of the spool,

and a horizontal force having a variable magnitude of
is applied, where t is in seconds. If the spool is initially

at rest, determine its angular velocity in 5 s. Assume that the spool
rolls without slipping at A.

P = 1t + 102 N
kG = 0.35 m.

G

A

P � (t � 10) N

(a)

0.75 m
0.4 m

981 N

G

P � (t � 10) N

A

NA

FA

vG

y

x

(b)

0.75 m
0.4 m

V

Fig. 19–6

= [100 kg (0.35 m)2 + (100 kg)(0.75 m)2]v2(0.75 m +  0.4 m)0 + B
L0

5 s

(t + 10) N dtR

b Ans.v2 = 1.05 rad>s
62.5(1.15) = 68.5v2

NOTE: Try solving this problem by applying the principle of impulse
and momentum about G and using the principle of linear impulse and
momentum in the x direction.

SOLUTION

Free-Body Diagram. From the free-body diagram, Fig. 19–6b, the
variable force P will cause the friction force to be variable, and
thus the impulses created by both P and must be determined by
integration. Force P causes the mass center to have a velocity to
the right, and so the spool has a clockwise angular velocity 

Principle of Impulse and Momentum. A direct solution for can
be obtained by applying the principle of angular impulse and
momentum about point A, the IC, in order to eliminate the unknown
friction impulse.

c IAv1 + ©
L
MA dt = IAv2+21

V

V.
vG

FA
FA



506 CH A P T E R 19 PL A N A R KI N E T I C S O F A RI G I D BO D Y:  IM P U L S E A N D MO M E N T U M

19

The cylinder shown in Fig. 19–7a has a mass of 6 kg. It is attached to a
cord which is wrapped around the periphery of a 20-kg disk that has a
moment of inertia If the cylinder is initially moving
downward with a speed of , determine its speed in 3 s. Neglect
the mass of the cord in the calculation.

2 m>sIA = 0.40 kg # m2.

EXAMPLE 19.4

SOLUTION I
Free-Body Diagram. The free-body diagrams of the cylinder and
disk are shown in Fig. 19–7b. All the forces are constant since the
weight of the cylinder causes the motion. The downward motion of
the cylinder, causes of the disk to be clockwise.

Principle of Impulse and Momentum. We can eliminate and
from the analysis by applying the principle of angular impulse and

momentum about point A. Hence

Disk

c

Cylinder

Kinematics. Since then 
and Substituting and solving the
equations simultaneously for yields

Ans.1vB22 = 13.0 m>s T

1vB22
v2 = 1vB22>0.2 m = 51vB22.

v1 = 12 m>s2>10.2 m2 = 10 rad>sv = vB>r,
-6 kg12 m>s2 + T13 s2 - 58.86 N13 s2 = -6 kg1vB22

mB1vB21 + ©
L
Fy dt = mB1vB221+ c2

0.40 kg # m21v12 + T13 s210.2 m2 = 10.40 kg # m22v2

IAv1 + ©
L
MA dt = IAv2+21

Ay
Ax

VvB,

vB

y

x

T

58.86 N

0.2 m
A

Ay

Ax

196.2 N

T

(b)

V

Fig. 19–7

B

vB � 2 m/s

0.2 m
A

(a)
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SOLUTION II
Impulse and Momentum Diagrams. We can obtain directly
by considering the system consisting of the cylinder, the cord, and the
disk. The impulse and momentum diagrams have been drawn to
clarify application of the principle of angular impulse and momentum
about point A, Fig. 19–7c.

Principle of Angular Impulse and Momentum. Realizing that
and we havev2 = 51vB22,v1 = 10 rad>s

1vB22

c aa syst. angular
impulse

b
A11-22

= aa syst. angular
momentum

b
A2

+2aa syst. angular
momentum

b
A1

+1

Ans.1vB22 = 13.0 m>s T

= 16 kg21vB2210.2 m2 + 10.40 kg # m22[51vB2210.2 m2]
16 kg212 m>s210.2 m2 + 10.40 kg # m22110 rad>s2 + 158.86 N213 s210.2 m2

�

6 kg(2 m/s)

0.2 m
A �

58.86 N(3 s)

0.2 m
A

Ax (3 s)

Ay (3 s)

196.2 N(3 s)

6 kg(vB)2

0.2 m
A

0.40 kg � m2(10 rad/s) 0.40 kg � m2V2

(c)

Fig. 19–7 (cont.)
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The Charpy impact test is used in materials testing to determine the
energy absorption characteristics of a material during impact.The test
is performed using the pendulum shown in Fig. 19–8a, which has a
mass m, mass center at G, and a radius of gyration about G.
Determine the distance from the pin at A to the point P where the
impact with the specimen S should occur so that the horizontal force
at the pin A is essentially zero during the impact. For the calculation,
assume the specimen absorbs all the pendulum’s kinetic energy
gained during the time it falls and thereby stops the pendulum from
swinging when 

SOLUTION
Free-Body Diagram. As shown on the free-body diagram,
Fig. 19–8b, the conditions of the problem require the horizontal force
at A to be zero. Just before impact, the pendulum has a clockwise
angular velocity and the mass center of the pendulum is moving to
the left at 

Principle of Impulse and Momentum. We will apply the principle
of angular impulse and momentum about point A. Thus,

c

Eliminating the impulse and substituting 
yields

Factoring out and solving for we obtain

Ans.

NOTE: Point P, so defined, is called the center of percussion. By
placing the striking point at P, the force developed at the pin will be
minimized. Many sports rackets, clubs, etc. are designed so that
collision with the object being struck occurs at the center of
percussion. As a consequence, no “sting” or little sensation occurs in
the hand of the player. (Also see Probs. 17–66 and 19–1.)

rP = r +
kG

2

r

rP,mv1

[mkG
2 + mr2]v1 - m1rv12rP = 0

IA = mkG2 + mr21F dt

-m1rv12 +
L
F dt = 01:+ 2

m1vG21 + ©
L
F dt = m1vG22

IAv1 - a
L
F dtbrP = 0+21

IAv1 + ©MA dt = IAv2

1vG21 = rv1.
V1,

u = 0°.

rP

kG

EXAMPLE 19.5

y

x

A

Ay

Ax � 0

(b)

_
r

rP

G

P

W

F

vG

V

Fig. 19–8

rP
A

S

G

P

(a)

_
r

u



19.2 PRINCIPLE OF IMPULSE AND MOMENTUM 509

19

FUNDAMENTAL PROBLEMS

F19–4. Gears of mass and have radii
of gyration about their respective mass centers of

and If gear is subjected to
the couple moment determine the angular
velocity of gear after it starts from rest.B 5 s

M = 10 N # m,
AkB = 150 mm.kA = 80 mm

50 kg10 kgA and BF19–1. The wheel has a radius of gyration about its
center of If it is subjected to a couple
moment of where is in seconds,
determine the angular velocity of the wheel when 
starting from rest.

t = 4 s,
tM = (3t2) N # m,

kO = 300 mm.O
60-kg

F19–5. The spool is subjected to a horizontal force
of If the spool rolls without slipping,
determine its angular velocity after it starts from rest.
The radius of gyration of the spool about its center of mass
is kG = 175 mm.

3 s
P = 150 N.

50-kg

F19–2. The wheel has a radius of gyration about its
mass center of If the wheel is subjected to
a couple moment of , determine its angular
velocity after it starts from rest and no slipping occurs.
Also, determine the friction force that develops between
the wheel and the ground.

6 s
M = 300 N # m

kO = 400 mm.O
300-kg

F19–3. If rod of negligible mass is subjected to the
couple moment determine the angular
velocity of the inner gear after it starts from
rest. The gear has a radius of gyration about its mass center
of and it rolls on the fixed outer gear.
Motion occurs in the horizontal plane.
kA = 100 mm,

t = 5 s10-kg
M = 9 N # m,

OA

F19–1

M � (3t2) N � m

O

F19–2

O

0.6 m

M � 300 N � m

F19–3

B

O

0.6 m
0.15 m

A M � 9 N � m

F19–6. The reel has a weight of and a radius of
gyration about its center of gravity of If it is
subjected to a torque of and starts from rest
when the torque is applied, determine its angular velocity in
3 seconds. The coefficient of kinetic friction between the
reel and the horizontal plane is mk = 0.15.

M = 25 lb # ft,
kG = 1.25 ft.

150 lb

F19–4

B

0.2 m

0.1 m

M � 10 N ·  m

A B

F19–5

G

P � 150 N

0.3 m

0.2 m

F19–6

1.5 ft

1 ft

M � 25 lb � ft
G

A
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PROBLEMS

19–3. Show that if a slab is rotating about a fixed axis
perpendicular to the slab and passing through its mass center
G, the angular momentum is the same when computed about
any other point P.

19–2. At a given instant, the body has a linear momentum
and an angular momentum computed

about its mass center. Show that the angular momentum of
the body computed about the instantaneous center of zero
velocity IC can be expressed as , where 
represents the body’s moment of inertia computed about
the instantaneous axis of zero velocity. As shown, the IC is
located at a distance away from the mass center G.rG>IC

IICHIC = IICV

HG = IGVL = mvG

•19–1. The rigid body (slab) has a mass m and rotates with
an angular velocity about an axis passing through the
fixed point O. Show that the momenta of all the particles
composing the body can be represented by a single vector
having a magnitude and acting through point P, called
the center of percussion, which lies at a distance

from the mass center G. Here is the
radius of gyration of the body, computed about an axis
perpendicular to the plane of motion and passing through G.

kGrP>G = k2
G>rG>O

mvG

V

*19–4. The pilot of a crippled jet was able to control his
plane by throttling the two engines. If the plane has a weight
of 17 000 lb and a radius of gyration of about
the mass center G, determine the angular velocity of the
plane and the velocity of its mass center G in if the
thrust in each engine is altered to and

as shown. Originally the plane is flying straight
at 1200 ft/s. Neglect the effects of drag and the loss of fuel.
T2 = 800 lb

T1 = 5000 lb
t = 5 s

kG = 4.7 ft

mvG

vG

G

V

P
rP/G

rG/O

O

Prob. 19–1

G         IGV

rG/IC

IC

mvG

Prob. 19–2

P

G

V

Prob. 19–3

1.25 ft
T2

T1

G

1.25 ft

Prob. 19–4
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19–7. The space shuttle is located in “deep space,” where
the effects of gravity can be neglected. It has a mass of
120 Mg, a center of mass at G, and a radius of gyration

about the x axis. It is originally traveling
forward at when the pilot turns on the engine at
A, creating a thrust , where t is in
seconds. Determine the shuttle’s angular velocity 2 s later.

T = 600(1 - e-0.3t) kN
v = 3 km>s

(kG)x = 14 m

19–6. The impact wrench consists of a slender 1-kg rod AB
which is 580 mm long, and cylindrical end weights at A and
B that each have a diameter of 20 mm and a mass of 1 kg.
This assembly is free to rotate about the handle and socket,
which are attached to the lug nut on the wheel of a car. If
the rod AB is given an angular velocity of 4 and it
strikes the bracket C on the handle without rebounding,
determine the angular impulse imparted to the lug nut.

rad>s

•19–5. The assembly weighs 10 lb and has a radius of
gyration about its center of mass G. The kinetic
energy of the assembly is when it is in the position
shown. If it rolls counterclockwise on the surface without
slipping, determine its linear momentum at this instant.

31 ft # lb
kG = 0.6 ft

*19–8. The 50-kg cylinder has an angular velocity of
30 when it is brought into contact with the horizontal
surface at C. If the coefficient of kinetic friction is ,
determine how long it will take for the cylinder to stop
spinning. What force is developed in link AB during this
time? The axle through the cylinder is connected to two
symmetrical links. (Only AB is shown.) For the computation,
neglect the weight of the links.

mC = 0.2
rad>s

1 ft

1 ft0.8 ft

G

Prob. 19–5

A

B

300 mm

300 mm

C

Prob. 19–6

2 m

T
AG

x

v = 3 km/s

z

y

Prob. 19–7

200 mm

A

B

C

500 mm

V � 30 rad/s

20�

Prob. 19–8
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P � 150 N

O

75 mm

150 mm

Probs. 19–9/10

A

M � 0.05 N � m 

mA � 0.8 kg 

B

kA � 31 mm 

mB � 0.3 kg 

kB � 15 mm 

40 mm

20 mm

Prob. 19–11

*19–12. The 200-lb flywheel has a radius of gyration about
its center of gravity O of . If it rotates
counterclockwise with an angular velocity of 
before the brake is applied, determine the time required for
the wheel to come to rest when a force of is
applied to the handle. The coefficient of kinetic friction
between the belt and the wheel rim is . (Hint:
Recall from the statics text that the relation of the tension
in the belt is given by , where is the angle of
contact in radians.) 

•19–13. The 200-lb flywheel has a radius of gyration about
its center of gravity O of . If it rotates
counterclockwise with a constant angular velocity of

before the brake is applied, determine the
required force P that must be applied to the handle to stop
the wheel in 2 s. The coefficient of kinetic friction between
the belt and the wheel rim is . (Hint: Recall from the
statics text that the relation of the tension in the belt is given
by , where is the angle of contact in radians.)bTB = TC emb

mk = 0.3

1200 rev>min

kO = 0.75 ft

bTB = TC emb

mk = 0.3

P = 200 lb

1200 rev>min
kO = 0.75 ft

19–11. A motor transmits a torque of to
the center of gear A. Determine the angular velocity of each
of the three (equal) smaller gears in 2 s starting from rest.
The smaller gears (B) are pinned at their centers, and the
masses and centroidal radii of gyration of the gears are
given in the figure.

M = 0.05 N # m

•19–9. If the cord is subjected to a horizontal force of
, and the gear rack is fixed to the horizontal plane,

determine the angular velocity of the gear in 4 s, starting from
rest. The mass of the gear is 50 kg, and it has a radius of
gyration about its center of mass O of .

19–10. If the cord is subjected to a horizontal force of
, and gear is supported by a fixed pin at O,

determine the angular velocity of the gear and the velocity
of the 20-kg gear rack in 4 s, starting from rest. The mass of
the gear is 50 kg and it has a radius of gyration of

. Assume that the contact surface between
the gear rack and the horizontal plane is smooth.
kO = 125 mm

P = 150 N

kO = 125 mm

P = 150 N

2.5 ft1.25 ft

1 ft

P

O

A B

v

C

Probs. 19–12/13

200 mm
C

500 mm 500 mm

400 mm
P (N)

5

2

A

P

B

t (s)

Prob. 19–14

19–14. The 12-kg disk has an angular velocity of
. If the brake ABC is applied such that the

magnitude of force P varies with time as shown, determine
the time needed to stop the disk. The coefficient of kinetic
friction at B is . Neglect the thickness of the brake.mk = 0.4

v = 20 rad>s
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•19–17. The 5-kg ball is cast on the alley with a backspin
of , and the velocity of its center of mass O is

. Determine the time for the ball to stop back
spinning, and the velocity of its center of mass at this
instant. The coefficient of kinetic friction between the ball
and the alley is .mk = 0.08

v0 = 5 m>s
v0 = 10 rad>s

*19–16. If the boxer hits the 75-kg punching bag with an
impulse of , determine the angular velocity of
the bag immediately after it has been hit. Also, find the
location d of point B, about which the bag appears to rotate.
Treat the bag as a uniform cylinder.

I = 20 N # s

19–15. The 1.25-lb tennis racket has a center of gravity at
G and a radius of gyration about G of .
Determine the position P where the ball must be hit so that
‘no sting’ is felt by the hand holding the racket, i.e., the
horizontal force exerted by the racket on the hand is zero.

kG = 0.625 ft

19–18. The smooth rod assembly shown is at rest when it
is struck by a hammer at A with an impulse of 10 .
Determine the angular velocity of the assembly and the
magnitude of velocity of its mass center immediately after it
has been struck. The rods have a mass per unit length of

.6 kg>m

N # s

A

B

1 m
1.5 m

0.5 m

1 m
d

I � 20 N � s

Prob. 19–16

rp

G

1 ft

P

Prob. 19–15

100 mm

O

v0 � 10 rad/s

v0 � 5 m/s

Prob. 19–17

y
x

z

0.2 m

0.2 m

0.2 m

0.2 m

A

10 N � s

30�

Prob. 19–18
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•19–21. For safety reasons, the 20-kg supporting leg of a
sign is designed to break away with negligible resistance at
B when the leg is subjected to the impact of a car.Assuming
that the leg is pinned at A and approximates a thin rod,
determine the impulse the car bumper exerts on it, if after
the impact the leg appears to rotate clockwise to a
maximum angle of .umax = 150°

*19–20. The 30-lb flywheel A has a radius of gyration about
its center of 4 in. Disk B weighs 50 lb and is coupled to the
flywheel by means of a belt which does not slip at its
contacting surfaces. If a motor supplies a counterclockwise
torque to the flywheel of , where t is in
seconds, determine the time required for the disk to attain
an angular velocity of 60 starting from rest.rad>s

M = (50t) lb # f t

19–19. The flywheel A has a mass of 30 kg and a radius of
gyration of . Disk B has a mass of 25 kg, is
pinned at D, and is coupled to the flywheel using a belt
which is subjected to a tension such that it does not slip at its
contacting surfaces. If a motor supplies a counterclockwise
torque or twist to the flywheel, having a magnitude of

, where t is in seconds, determine the
angular velocity of the disk 3 s after the motor is turned on.
Initially, the flywheel is at rest.

M = (12t) N # m

kC = 95 mm

19–22. The slender rod has a mass m and is suspended at its
end A by a cord. If the rod receives a horizontal blow giving
it an impulse I at its bottom B, determine the location y of
the point P about which the rod appears to rotate during
the impact.

vC

2 m

0.25 m

A

C

B

u

Prob. 19–21

M

A

C

125 mm
D

125 mmB

Prob. 19–19

6 in.

A

9 in.

B

M � (50t) lb�ft

Prob. 19–20

A

BI

P

l

y

Prob. 19–22
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19–26. The body and bucket of a skid steer loader has a
weight of and its center of gravity is located at 
Each of the four wheels has a weight of and a radius
of gyration about its center of gravity of If the engine
supplies a torque of to each of the rear drive
wheels, determine the speed of the loader in 
starting from rest. The wheels roll without slipping.

19–27. The body and bucket of a skid steer loader has a
weight of 2000 lb, and its center of gravity is located at G.
Each of the four wheels has a weight of 100 lb and a radius
of gyration about its center of gravity of 1 ft. If the loader
attains a speed of in 10 s, starting from rest,
determine the torque M supplied to each of the rear drive
wheels. The wheels roll without slipping.

20 ft>s

t = 10 s,
M = 100 lb # ft

1 ft.
100 lb

G.2000 lb,

•19–25. If the shaft is subjected to a torque of
, where t is in seconds, determine the

angular velocity of the assembly when , starting from
rest. Rods AB and BC each have a mass of 9 kg.

t = 3 s
M = (15t2) N # m

19–23. The 25-kg circular disk is attached to the yoke by
means of a smooth axle A. Screw C is used to lock the disk
to the yoke. If the yoke is subjected to a torque of

, where t is in seconds, and the disk is
unlocked, determine the angular velocity of the yoke when

, starting from rest. Neglect the mass of the yoke.

*19–24. The 25-kg circular disk is attached to the yoke by
means of a smooth axle A. Screw C is used to lock the disk
to the yoke. If the yoke is subjected to a torque of

, where t is in seconds, and the disk is
locked, determine the angular velocity of the yoke when

, starting from rest. Neglect the mass of the yoke.t = 3 s

M = (5t2) N # m

t = 3 s

M = (5t2) N # m

*19–28. The two rods each have a mass m and a length l,
and lie on the smooth horizontal plane. If an impulse I is
applied at an angle of 45° to one of the rods at midlength as
shown, determine the angular velocity of each rod just after
the impact. The rods are pin connected at B.

0.15 m

0.3 m

A

C

M � (5t2) N � m

Probs. 19–23/24

1 m

C

B

A

M � (15t2) N � m1 m

Prob. 19–25

2 ft 1 ft

1.25 ft 1.25 ftG

M
2 ft

Probs. 19–26/27

45�

l/2
l/2

l

A

C

I

B

Prob. 19–28
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x y

z

1.5 m

1.5 m

T � (5e(–t/10)) kN

T � (5e(–t/10)) kN

A

B

Prob. 19–31

x

C

B

A

y

z

0.6 m

0.6 m

0.6 m

0.2 m

M � (30e(�0.1t)) N � m

Prob. 19–32

19–31. The 200-kg satellite has a radius of gyration about
the centroidal z axis of . Initially it is rotating
with a constant angular velocity of .
If the two jets A and B are fired simultaneously and
produce a thrust of , where t is in seconds,
determine the angular velocity of the satellite, five seconds
after firing.

T = (5e—0.1t) kN

V0 = 51500 k6 rev>min
kz = 1.25 m

*19–32. If the shaft is subjected to a torque of
, where t is in seconds, determine the

angular velocity of the assembly when , starting from
rest. The rectangular plate has a mass of 25 kg. Rods AC
and BC have the same mass of 5 kg.

t = 5 s
M = (30e—0.1t) N # m

0.5 m

0.5 m

4 m

G

C

A

B

Prob. 19–29

A D

G

0.86 m
0.6 m

0.5 m

1.95 m 1.10 m
B C

M

Prob. 19–30

19–30. The frame of the roller has a mass of 5.5 Mg and a
center of mass at G. The roller has a mass of 2 Mg and
a radius of gyration about its mass center of . If
a torque of is applied to the rear wheels,
determine the speed of the compactor in , starting
from rest. No slipping occurs. Neglect the mass of the
driving wheels.

t = 4 s
M = 600 N # m

kA = 0.45 m

•19–29. The car strikes the side of a light pole, which is
designed to break away from its base with negligible
resistance. From a video taken of the collision it is observed
that the pole was given an angular velocity of 60
when AC was vertical. The pole has a mass of 175 kg, a
center of mass at G, and a radius of gyration about an axis
perpendicular to the plane of the pole assembly and passing
through G of . Determine the horizontal
impulse which the car exerts on the pole at the instant AC is
essentially vertical.

kG = 2.25 m

rad>s
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19.3 Conservation of Momentum

Conservation of Linear Momentum If the sum of all the
linear impulses acting on a system of connected rigid bodies is zero in a
specific direction, then the linear momentum of the system is constant, or
conserved in this direction, that is,

(19–16)

This equation is referred to as the conservation of linear momentum.
Without inducing appreciable errors in the calculations, it may be

possible to apply Eq. 19–16 in a specified direction for which the linear
impulses are small or nonimpulsive. Specifically, nonimpulsive forces
occur when small forces act over very short periods of time. Typical
examples include the force of a slightly deformed spring, the initial
contact force with soft ground, and in some cases the weight of the body.

Conservation of Angular Momentum The angular momentum
of a system of connected rigid bodies is conserved about the system’s
center of mass G, or a fixed point O, when the sum of all the angular
impulses about these points is zero or appreciably small (nonimpulsive).
The third of Eqs. 19–15 then becomes

(19–17)

This equation is referred to as the conservation of angular momentum. In
the case of a single rigid body, Eq. 19–17 applied to point G becomes

For example, consider a swimmer who executes a
somersault after jumping off a diving board. By tucking his arms and legs
in close to his chest, he decreases his body’s moment of inertia and thus
increases his angular velocity ( must be constant). If he straightens
out just before entering the water, his body’s moment of inertia is
increased, and so his angular velocity decreases. Since the weight of his
body creates a linear impulse during the time of motion, this example
also illustrates how the angular momentum of a body can be conserved
and yet the linear momentum is not. Such cases occur whenever the
external forces creating the linear impulse pass through either the center
of mass of the body or a fixed axis of rotation.

IGv

1IGv21 = 1IGv22.

aa syst. angular
momentum

b
O1

= aa syst. angular
momentum

b
O2

aa syst. linear
momentum

b
1
= aa syst. linear

momentum
b

2
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Procedure for Analysis

The conservation of linear or angular momentum should be applied
using the following procedure.

Free-Body Diagram.

• Establish the x, y inertial frame of reference and draw the free-
body diagram for the body or system of bodies during the time of
impact. From this diagram classify each of the applied forces as
being either “impulsive” or “nonimpulsive.”

• By inspection of the free-body diagram, the conservation of linear
momentum applies in a given direction when no external
impulsive forces act on the body or system in that direction;
whereas the conservation of angular momentum applies about a
fixed point O or at the mass center G of a body or system of
bodies when all the external impulsive forces acting on the body
or system create zero moment (or zero angular impulse) about O
or G.

• As an alternative procedure, draw the impulse and momentum
diagrams for the body or system of bodies. These diagrams are
particularly helpful in order to visualize the “moment” terms
used in the conservation of angular momentum equation, when it
has been decided that angular momenta are to be computed
about a point other than the body’s mass center G.

Conservation of Momentum.

• Apply the conservation of linear or angular momentum in the
appropriate directions.

Kinematics.

• If the motion appears to be complicated, kinematic (velocity)
diagrams may be helpful in obtaining the necessary kinematic
relations.
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EXAMPLE 19.6

The 10-kg wheel shown in Fig. 19–9a has a moment of inertia
Assuming that the wheel does not slip or rebound,

determine the minimum velocity it must have to just roll over the
obstruction at A.

SOLUTION
Impulse and Momentum Diagrams. Since no slipping or rebounding
occurs, the wheel essentially pivots about point A during contact. This
condition is shown in Fig. 19–9b, which indicates, respectively, the
momentum of the wheel just before impact, the impulses given to the
wheel during impact, and the momentum of the wheel just after impact.
Only two impulses (forces) act on the wheel. By comparison, the force at
A is much greater than that of the weight, and since the time of impact is
very short, the weight can be considered nonimpulsive. The impulsive
force F at A has both an unknown magnitude and an unknown direction

To eliminate this force from the analysis, note that angular momentum
about A is essentially conserved since

Conservation of Angular Momentum. With reference to Fig. 19–9b,

c

Kinematics. Since no slipping occurs, in general 
Substituting this into the above equation and

simplifying yields
(1)

Conservation of Energy.* In order to roll over the obstruction, the
wheel must pass position 3 shown in Fig. 19–9c. Hence, if [or

] is to be a minimum, it is necessary that the kinetic energy of the
wheel at position 2 be equal to the potential energy at position 3.
Placing the datum through the center of gravity, as shown in the
figure, and applying the conservation of energy equation, we have

Substituting and Eq. 1 into this equation, and solving,

Ans.1vG21 = 0.729 m>s:
v2 = 51vG22

506 + 5198.1 N210.03 m26
E12110 kg21vG222 + 1

210.156 kg # m22v2
2F + 506 =

5T26 + 5V26 = 5T36 + 5V36

1vG21
1vG22

1vG22 = 0.89211vG21
= vG>0.2 m = 5vG.

v = vG>r
10.2 m2110 kg21vG22 + 10.156 kg # m221v22

10.2 m - 0.03 m2110 kg21vG21 + 10.156 kg # m221v12 =
r¿m1vG21 + IGv1 = rm1vG22 + IGv2

1HA21 = 1HA22+21

198.1¢t2d L 0.
u.

vG
IG = 0.156 kg # m2.

*This principle does not apply during impact, since energy is lost during the collision.
However, just after impact, as in Fig. 19–9c, it can be used.

vG0.2 m

G

A
0.03 m

(a)

98.1 t

G

A
r¿ � (0.2 � 0.03) m

m(vG)1

G

A

(b)

G

A

d

r � 0.2 m

=
+

F dt

m(vG)2

�

u

IGV2

IGV1

�

(c)

G

(vG)2

0.03 m

98.1 N

Datum

2

3V2

Fig. 19–9
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The 5-kg slender rod shown in Fig. 19–10a is pinned at O and is
initially at rest. If a 4-g bullet is fired into the rod with a velocity of

, as shown in the figure, determine the angular velocity of the
rod just after the bullet becomes embedded in it.

SOLUTION
Impulse and Momentum Diagrams. The impulse which the bullet
exerts on the rod can be eliminated from the analysis, and the angular
velocity of the rod just after impact can be determined by considering
the bullet and rod as a single system.To clarify the principles involved,
the impulse and momentum diagrams are shown in Fig. 19–10b. The
momentum diagrams are drawn just before and just after impact.
During impact, the bullet and rod exert equal but opposite internal
impulses at A.As shown on the impulse diagram, the impulses that are
external to the system are due to the reactions at O and the weights of
the bullet and rod. Since the time of impact, is very short, the rod
moves only a slight amount, and so the “moments” of the weight
impulses about point O are essentially zero. Therefore angular
momentum is conserved about this point.

¢t,

400 m>s

EXAMPLE 19.7

0.25 m

O

0.75 mB

vB � 400 m/s

30�

(a)

�

O

30�

(b)

mB(vB)1
0.75 m

A

O

G
49.05 t

0.0392 t

Oy    t

Ox    t�

�

�

�

� G mR(vG)2

mB(vB)2

IGV2

O

0.5 m
0.75 m

Conservation of Angular Momentum. From Fig. 19–10b, we have

a ©1HO21 = ©1HO22+21

G
(vG)2

(vB)2

V2

O

0.5 m
0.75 m

(c)

Fig. 19–10

mB1vB2210.75 m2 +mR1vG2210.5 m2 + IGv2mB1vB21 cos 30°10.75 m2 =

or
(1)

Kinematics. Since the rod is pinned at O, from Fig. 19–10c we have

Substituting into Eq. 1 and solving yields

d Ans.v2 = 0.623 rad>s

1vG22 = 10.5 m2v2 1vB22 = 10.75 m2v2

1.039 = 0.0031vB22 + 2.501vG22 + 0.4167v2

10.004 kg21vB2210.75 m2 + 15 kg21vG2210.5 m2 + C 1
1215 kg211 m22 Dv2

10.004 kg21400 cos 30° m>s210.75 m2 =
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*19.4 Eccentric Impact

The concepts involving central and oblique impact of particles were
presented in Sec. 15.4. We will now expand this treatment and discuss the
eccentric impact of two bodies. Eccentric impact occurs when the line
connecting the mass centers of the two bodies does not coincide with the
line of impact.*  This type of impact often occurs when one or both of the
bodies are constrained to rotate about a fixed axis. Consider, for example,
the collision at C between the two bodies A and B, shown in Fig. 19–11a.
It is assumed that just before collision B is rotating counterclockwise with
an angular velocity and the velocity of the contact point C located
on A is Kinematic diagrams for both bodies just before collision
are shown in Fig. 19–11b. Provided the bodies are smooth, the impulsive
forces they exert on each other are directed along the line of impact.
Hence, the component of velocity of point C on body B, which is directed
along the line of impact, is Fig. 19–11b. Likewise, on body
A the component of velocity along the line of impact is In
order for a collision to occur,

During the impact an equal but opposite impulsive force P is exerted
between the bodies which deforms their shapes at the point of contact.
The resulting impulse is shown on the impulse diagrams for both bodies,
Fig. 19–11c. Note that the impulsive force at point C on the rotating body
creates impulsive pin reactions at O. On these diagrams it is assumed
that the impact creates forces which are much larger than the
nonimpulsive weights of the bodies, which are not shown. When the
deformation at point C is a maximum, C on both the bodies moves with
a common velocity v along the line of impact, Fig. 19–11d. A period of
restitution then occurs in which the bodies tend to regain their original
shapes. The restitution phase creates an equal but opposite impulsive
force R acting between the bodies as shown on the impulse diagram,
Fig. 19–11e. After restitution the bodies move apart such that point C on
body B has a velocity and point C on body A has a velocity 
Fig. 19–11f, where 

In general, a problem involving the impact of two bodies requires
determining the two unknowns and assuming and

are known (or can be determined using kinematics, energy
methods, the equations of motion, etc.). To solve such problems, two
equations must be written. The first equation generally involves
application of the conservation of angular momentum to the two bodies.
In the case of both bodies A and B, we can state that angular momentum
is conserved about point O since the impulses at C are internal to the
system and the impulses at O create zero moment (or zero angular
impulse) about O. The second equation can be obtained using the
definition of the coefficient of restitution, e, which is a ratio of the
restitution impulse to the deformation impulse.

1vB21
1vA211vB22,1vA22

1vB22 7 1vA22.
1uA22,1vB22

1vA21 7 1vB21.
1vA21.1uA21

1vB21 = 1vB21r,

1uA21.
1VB21,

* When these lines coincide, central impact occurs and the problem can be analyzed as
discussed in Sec. 15.4.

Here is an example of eccentric impact
occurring between this bowling ball
and pin.

A
B

C

O

Line
of impact

Plane of impact

(a)

Fig. 19–11
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Is is important to realize, however, that this analysis has only a very
limited application in engineering, because values of e for this case have
been found to be highly sensitive to the material, geometry, and the velocity
of each of the colliding bodies. To establish a useful form of the coefficient
of restitution equation we must first apply the principle of angular
impulse and momentum about point O to bodies B and A separately.
Combining the results, we then obtain the necessary equation. Proceeding
in this manner, the principle of impulse and momentum applied to body
B from the time just before the collision to the instant of maximum
deformation, Figs. 19–11b, 19–11c, and 19–11d, becomes

a (19–18)

Here is the moment of inertia of body B about point O. Similarly,
applying the principle of angular impulse and momentum from the
instant of maximum deformation to the time just after the impact,
Figs. 19–11d, 19–11e, and 19–11f, yields

a (19–19)

Solving Eqs. 19–18 and 19–19 for and respectively, and
formulating e, we have

e = L
R dt

L
P dt

=
r1vB22 - rv
rv - r1vB21 =

1vB22 - v
v - 1vB21

1R dt,1P dt

IOv + r
L
R dt = IO1vB22+21

IO

IO1vB21 + r
L
P dt = IOv+21

A

B

C

O

(b)

(vB)1 � (vB)1r

r

(vA)1

Velocity
before collision

C

(VB)1

(uA)1

A

B

C

O

(c)

r

Deformation
impulse

C

� Oy dt

� Ox dt

� Pdt

� Pdt A B

C

O

(d)

v � vr

r

u

v

Velocity at maximum
deformation

V

� O¿y dt

� O¿x dt

A

B

C

O

(e)

r

Restitution
impulse

C

� Rdt

� Rdt

A

B

C

O

(f)

(vB)2 � (vB)2r

r

(vA)2

Velocity
after collision

(uA)2
C

(VB)2

Fig. 19–11 (cont.)
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In the same manner, we can write an equation which relates the
magnitudes of velocity and of body A. The result is

Combining the above two equations by eliminating the common velocity
yields the desired result, i.e.,

(19–20)

This equation is identical to Eq. 15–11, which was derived for the central
impact between two particles. It states that the coefficient of restitution
is equal to the ratio of the relative velocity of separation of the points of
contact (C) just after impact to the relative velocity at which the points
approach one another just before impact. In deriving this equation, we
assumed that the points of contact for both bodies move up and to the
right both before and after impact. If motion of any one of the contacting
points occurs down and to the left, the velocity of this point should be
considered a negative quantity in Eq. 19–20.

e =
1vB22 - 1vA22
1vA21 - 1vB211+Q2

v

e =
v - 1vA22
1vA21 - v

1vA221vA21

During impact the columns of many highway signs are intended to break out of their
supports and easily collapse at their joints. This is shown by the slotted connections at
their base and the breaks at the column’s midsection.
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The 10-lb slender rod is suspended from the pin at A, Fig. 19–12a. If a
2-lb ball B is thrown at the rod and strikes its center with a velocity of

, determine the angular velocity of the rod just after impact.The
coefficient of restitution is 

SOLUTION

Conservation of Angular Momentum. Consider the ball and rod
as a system, Fig. 19–12b.Angular momentum is conserved about point
A since the impulsive force between the rod and ball is internal. Also,
the weights of the ball and rod are nonimpulsive. Noting the directions
of the velocities of the ball and rod just after impact as shown on the
kinematic diagram, Fig. 19–12c, we require

a

Since then

(1)

Coefficient of Restitution. With reference to Fig. 19–12c, we have

Solving,

d Ans.v2 = 3.65 rad>s
1vB22 = -6.52 ft>s = 6.52 ft>s ;

 12.0 = 1.5v2 - 1vB22
e =
1vG22 - 1vB22
1vB21 - 1vG21 0.4 =

11.5 ft2v2 - 1vB22
30 ft>s - 0

1:+ 2

2.795 = 0.093171vB22 + 0.9317v2

1vG22 = 1.5v2

a 10 lb

32.2 ft>s2 b1vG2211.5 ft2 + c 1
12
a 10 lb

32.2 ft>s2 b13 ft22 dv2

a 2 lb

32.2 ft>s2 b130 ft>s211.5 ft2 = a 2 lb

32.2 ft>s2 b1vB2211.5 ft2 +

mB1vB2111.5 ft2 = mB1vB2211.5 ft2 + mR1vG2211.5 ft2 + IGv2

1HA21 = 1HA22+21

e = 0.4.
30 ft>s

EXAMPLE 19.8

A

(b)

Ay

Ax

y

x

2 lb
10 lb

1.5 ft

1.5 ft
(vB)1 � 30 ft/s

A

(c)

B

G
(vG)2

V2

(vB)2

Fig. 19–12

1.5 ft

1.5 ft

30 ft/s

A

(a)

B
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1.75 m

750 mm

G

G

A

B

vA � 3 rad/s

Prob. 19–33

PROBLEMS

19–35. A horizontal circular platform has a weight of
300 lb and a radius of gyration kz = 8 ft about the z axis
passing through its center O. The platform is free to rotate
about the z axis and is initially at rest. A man having a
weight of 150 lb begins to run along the edge in a circular
path of radius 10 ft. If he maintains a speed of 4 relative
to the platform, determine the angular velocity of the
platform. Neglect friction.

ft>s

19–34. A 75-kg man stands on the turntable A and rotates a
6-kg slender rod over his head. If the angular velocity of the
rod is measured relative to the man and the
turntable is observed to be rotating in the opposite direction
with an angular velocity of , determine the radius
of gyration of the man about the z axis. Consider the turntable
as a thin circular disk of 300-mm radius and 5-kg mass.

vt = 3 rad>s
vr = 5 rad>s

•19–33. The 75-kg gymnast lets go of the horizontal bar in
a fully stretched position A, rotating with an angular
velocity of . Estimate his angular velocity
when he assumes a tucked position B. Assume the gymnast
at positions A and B as a uniform slender rod and a uniform
circular disk, respectively.

vA = 3 rad>s

z

O

10 ft

Prob. 19–35

z

1 m1 m

A

Prob. 19–34

z

O

n

t

10 ft

Prob. 19–36

*19–36. A horizontal circular platform has a weight of
300 lb and a radius of gyration about the z axis
passing through its center O. The platform is free to rotate
about the z axis and is initially at rest. A man having a
weight of 150 lb throws a 15-lb block off the edge of the
platform with a horizontal velocity of 5 , measured
relative to the platform. Determine the angular velocity of
the platform if the block is thrown (a) tangent to the
platform, along the axis, and (b) outward along a radial
line, or axis. Neglect the size of the man.+n

+ t

ft>s

kz = 8 ft
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19–39. A 150-lb man leaps off  the circular platform with a
velocity of , relative to the platform.
Determine the angular velocity of the platform afterwards.
Initially the man and platform are at rest. The platform
weighs 300 lb and can be treated as a uniform circular disk.

vm>p = 5 ft>s

19–38. The satellite’s body C has a mass of 200 kg and a
radius of gyration about the z axis of . If the
satellite rotates about the z axis with an angular velocity of

, when the solar panels are in a position of
, determine the angular velocity of the satellite when

the solar panels are rotated to a position of .
Consider each solar panel to be a thin plate having a mass
of 30 kg. Neglect the mass of the rods.

u = 90°
u = 0°

A and B5 rev>s
kz = 0.2 m

•19–37. The man sits on the swivel chair holding two 5-lb
weights with his arms outstretched. If he is rotating at
3 in this position, determine his angular velocity when
the weights are drawn in and held 0.3 ft from the axis of
rotation. Assume he weighs 160 lb and has a radius of
gyration about the z axis. Neglect the mass of his
arms and the size of the weights for the calculation.

kz = 0.55 ft

rad>s

*19–40. The 150-kg platform can be considered as a
circular disk. Two men, A and B, of  60-kg and 75-kg mass,
respectively, stand on the platform when it is at rest. If they
start to walk around the circular paths with speeds of

and , measured relative to the
platform, determine the angular velocity of the platform.

vB>p = 2 m>svA>p = 1.5 m>s

z

3 rad/s

2.5 ft2.5 ft

Prob. 19–37

0.5 m
0.5 m

0.4 m

B

y

z

A
Cx

u

Prob. 19–38

8 ft

10 ft

vm/p � 5 ft/s

Prob. 19–39

2 m

2.5 m

3 m

B

A
vA/p = 1.5 m/s

vB/p = 2 m/s

Prob. 19–40
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180 mm

20 mmA

V1

Prob. 19–44

z

b

b

0.75 m
0.75 m

A

B

n
n

t

t

V � 2 rad/s

Prob. 19–41

P

V1

a a

Prob. 19–42

A
B

30 mm

v2

v1 � 0.2 m/s

125 mm

Prob. 19–43

19–43. A ball having a mass of 8 kg and initial speed of
rolls over a 30-mm-long depression.Assuming

that the ball rolls off the edges of contact first A, then B,
without slipping, determine its final velocity when it
reaches the other side.

v2

v1 = 0.2 m>s

19–42. A thin square plate of mass m rotates on the
smooth surface with an angular velocity Determine its
new angular velocity just after the hook at its corner strikes
the peg P and the plate starts to rotate about P without
rebounding.

V1.

•19–41. Two children A and B, each having a mass of 30 kg,
sit at the edge of the merry-go-round which rotates at

. Excluding the children, the merry-go-round
has a mass of 180 kg and a radius of gyration .
Determine the angular velocity of the merry-go-round if A
jumps off horizontally in the direction with a speed of
2 , measured relative to the merry-go-round.What is the
merry-go-round’s angular velocity if B then jumps off
horizontally in the direction with a speed of 2 ,
measured relative to the merry-go-round? Neglect friction
and the size of each child.

m>s- t

m>s
-n

kz = 0.6 m
v = 2 rad>s

*19–44. The 15-kg  thin ring strikes the 20-mm-high step.
Determine the smallest angular velocity the ring can
have so that it will just roll over the step at A without
slipping

V1
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3 m

0.5 m

A

B

u

C

Prob. 19–45

1 ft
v

A

A B

CDS

B C

D

1 ft

Prob. 19–46

z

A

300 mm

200 mm

600 m/ s

100 mm

Prob. 19–47

A B C

D

800 mm 400 mm

300 mm

u

Prob. 19–48

19–47. The target is a thin 5-kg circular disk that can rotate
freely about the z axis. A 25-g bullet, traveling at ,
strikes the target at A and becomes embedded in it.
Determine the angular velocity of the target after  the
impact. Initially, it is at rest.

600 m>s

19–46. The 10-lb block slides on the smooth surface when
the corner D hits a stop block S. Determine the minimum
velocity v the block should have which would allow it to tip
over on its side and land in the position shown. Neglect the
size of S. Hint: During impact consider the weight of the
block to be nonimpulsive.

•19–45. The uniform pole has a mass of 15 kg and falls
from rest when It strikes the edge at A when

. If the pole then begins to pivot about this point
after contact, determine the pole’s angular velocity just
after the impact. Assume that the pole does not slip at B as
it falls until it strikes A.

u = 60°
u = 90°.

*19–48. A 2-kg mass of putty D strikes the uniform 10-kg
plank ABC with a velocity of . If the putty remains
attached to the plank, determine the maximum angle of
swing before the plank momentarily stops. Neglect the size
of the putty.

u

10 m>s
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19

0.3 m

0.225 m

1 m

B

C

A

Prob. 19–49

3 ft

1 ft

0.5 ft

C

D

B
H

A

Prob. 19–50

150 mm

C

u

150 mm

Prob. 19–51

(vG)1 � 6 ft/s

r � 0.5 ft

G

2 ft

0.5 ft

z

2 ft

OB

A

Prob. 19–52

19–51. The disk has a mass of 15 kg. If it is released from
rest when , determine the maximum angle of
rebound after it collides with the wall. The coefficient of
restitution between the disk and the wall is . When

, the disk hangs such that it just touches the wall.
Neglect friction at the pin C.
u = 0°

e = 0.6

uu = 30°

19–50. The rigid 30-lb plank is struck by the 15-lb hammer
head H. Just before the impact the hammer is gripped
loosely and has a vertical velocity of . If the
coefficient of restitution between the hammer head and the
plank is , determine the maximum height attained
by the 50-lb block D. The block can slide freely along the
two vertical guide rods. The plank is initially in a horizontal
position.

e = 0.5

75 ft>s

•19–49. The uniform 6-kg slender rod AB is given a slight
horizontal disturbance when it is in the vertical position and
rotates about B without slipping. Subsequently, it strikes the
step at C. The impact is perfectly plastic and so the rod
rotates about C without slipping after the impact.
Determine the angular velocity of the rod when it is in the
horizontal position shown.

*19–52. The mass center of the 3-lb ball has a velocity of
when it strikes the end of the smooth 5-lb

slender bar which is at rest. Determine the angular velocity
of the bar about the z axis just after impact if .e = 0.8

(vG)1 = 6 ft>s
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19

19–55. The pendulum consists of a 10-lb sphere and 4-lb
rod. If it is released from rest when , determine the
angle of rebound after the sphere strikes the floor. Take

.e = 0.8
u

u = 90°

19–54. The 4-lb rod AB hangs in the vertical position. A 
2-lb block, sliding on a smooth horizontal surface with a
velocity of 12 , strikes the rod at its end B. Determine
the velocity of the block immediately after the collision.The
coefficient of restitution between the block and the rod at B
is .e = 0.8

ft>s

•19–53. The 300-lb bell is at rest in the vertical position
before  it is struck by a 75-lb wooden post suspended from
two equal-length ropes. If the post is released from rest at

, determine the angular velocity of the bell and the
velocity of the post immediately after the impact. The
coefficient of restitution between the bell and the post is

. The center of gravity of the bell is located at point
G and its radius of gyration about G is .kG = 1.5 ft
e = 0.6

u = 45°

*19–56. The solid ball of mass m is dropped with a velocity
onto the edge of the rough step. If it rebounds

horizontally off the step with a velocity , determine the
angle at which contact occurs. Assume no slipping when
the ball strikes the step. The coefficient of restitution is e.

u

v2

v1

3 ft

4.5 ft

G

u u

Prob. 19–53

B

A

3 ft

12 ft/s

Prob. 19–54

0.3 ft

0.3 ft

2 ft

O u

Prob. 19–55

r
v1

v2

u

Prob. 19–56
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19A

C

B

D

P19–4

A

M

B

P19–2

A

B

P19–3

A

B

G

P19–1

CONCEPTUAL PROBLEMS

P19–3. Why is it necessary to have the tail blade on the
helicopter that spins perpendicular to the spin of the main
blade Explain your answer using numerical values and
an impulse and momentum analysis.

A?

B

P19–2. The swing bridge opens and closes by turning 
using a motor located under the center of the deck at that
applies a torque to the bridge. If the bridge was
supported at its end , would the same torque open the
bridge at the same time, or would it open slower or faster?
Explain your answer using numerical values and an impulse
and momentum analysis. Also, what are the benefits of
making the bridge have the variable depth as shown?

B
M

A
90°

P19–1. The soil compactor moves forward at constant
velocity by supplying power to the rear wheels. Use
appropriate numerical data for the wheel, roller, and body
and calculate the angular momentum of this system about
point at the ground, point on the rear axle, and point 
the center of gravity for the system.

G,BA

P19–4. The amusement park ride consists of two gondolas
and , and counterweights and that swing in

opposite directions. Using realistic dimensions and mass,
calculate the angular momentum of this system for any
angular position of the gondolas. Explain through analysis
why it is a good idea to design this system to have
counterweights with each gondola.

DCBA
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HG � IGV

L � mvG

G

A

d

General plane motion

d

G

L � mvG

vG � vA

Translation

CHAPTER REVIEW

Linear and Angular Momentum

The linear and angular momentum of a
rigid body can be referenced to its mass
center G.

If the angular momentum is to be
determined about an axis other than the
one passing through the mass center, then
the angular momentum is determined by
summing vector and the moment of
vector about this axis.L

HG

Principle of Impulse and Momentum

The principles of linear and angular
impulse and momentum are used to
solve problems that involve force,
velocity, and time. Before applying these
equations, it is important to establish the
x, y, z inertial coordinate system. The
free-body diagram for the body should
also be drawn in order to account for all
of the forces and couple moments that
produce impulses on the body.

HA = IGv + 1mvG2dHO = IOvHA = 1mvG2d
HG = IGvHG = IGvHG = 0

L = mvGL = mvGL = mvG

IGv1 + ©
L

t2

t1

MG dt = IGv2

m1vGy21 + ©
L

t2

t1

Fy dt = m1vGy22

m1vGx21 + ©
L

t2

t1

Fx dt = m1vGx22

G

L � mvG

HG � IGV

V

O

Rotation about a fixed axis
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Conservation of Momentum

Provided the sum of the linear impulses
acting on a system of connected rigid
bodies is zero in a particular direction,
then the linear momentum for the
system is conserved in this direction.
Conservation of angular momentum
occurs if the impulses pass through an
axis or are parallel to it. Momentum is
also conserved if the external forces are
small and thereby create nonimpulsive
forces on the system. A free-body
diagram should accompany any
application in order to classify the forces
as impulsive or nonimpulsive and to
determine an axis about which the
angular momentum may be conserved.

aa syst. angular
momentum

b
O1

= aa syst. angular
momentum

b
O2

aa syst. linear
momentum

b
1
= aa syst. linear

momentum
b

2

Eccentric Impact

If the line of impact does not coincide
with the line connecting the mass centers
of two colliding bodies, then eccentric
impact will occur. If the motion of the
bodies just after the impact is to be
determined, then it is necessary to
consider a conservation of momentum
equation for the system and use the
coefficient of restitution equation.

e =
1vB22 - 1vA22
1vA21 - 1vB21



Planar Kinematics 
and Kinetics of a 
Rigid Body

Having presented the various topics in planar kinematics and kinetics in
Chapters 16 through 19, we will now summarize these principles and
provide an opportunity for applying them to the solution of various types
of problems.

Kinematics. Here we are interested in studying the geometry of
motion, without concern for the forces which cause the motion. Before
solving a planar kinematics problem, it is first necessary to classify the
motion as being either rectilinear or curvilinear translation, rotation
about a fixed axis, or general plane motion. In particular, problems
involving general plane motion can be solved either with reference to a
fixed axis (absolute motion analysis) or using translating or rotating
frames of reference (relative motion analysis). The choice generally
depends upon the type of constraints and the problem’s geometry. In all
cases, application of the necessary equations can be clarified by drawing
a kinematic diagram. Remember that the velocity of a point is always
tangent to its path of motion, and the acceleration of a point can have
components in the directions when the path is curved.

Translation. When the body moves with rectilinear or curvilinear
translation, all the points on the body have the same motion.

aB = aAvB = vA

n–t

2
R E V I E W
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Rotation About a Fixed Axis. Angular Motion.
Variable Angular Acceleration. Provided a mathematical relationship is
given between any two of the four variables , , , and , then a third
variable can be determined by solving one of the following equations which
relate all three variables.

Constant Angular Acceleration. The following equations apply when it is
absolutely certain that the angular acceleration is constant.

u = u0 + v0t + 1
2act

2   v = v0 + act   v2 = v2
0 + 2ac1u - u02

a du = v dva =
dv

dt
v =

du

dt

tavu

General Plane Motion—Relative-Motion Analysis. Recall that
when translating axes are placed at the “base point” , the relative motion
of point with respect to is simply circular motion of B about A. The
following equations apply to two points and located on the same
rigid body.

Rotating and translating axes are often used to analyze the motion of rigid
bodies which are connected together by collars or slider blocks.

Kinetics. To analyze the forces which cause the motion we must use
the principles of kinetics. When applying the necessary equations, it is
important to first establish the inertial coordinate system and define the
positive directions of the axes.The directions should be the same as those
selected when writing any equations of kinematics if simultaneous
solution of equations becomes necessary.

Equations of Motion. These equations are used to determine
accelerated motions or forces causing the motion. If used to determine
position, velocity, or time of motion, then kinematics will have to be
considered to complete the solution. Before applying the equations of
motion, always draw a free-body diagram in order to identify all the forces

aB = aA + æ
#
* rB>A + æ * 1æ * rB>A2 + 2æ * 1vB>A2xyz + 1aB>A2xyz

vB = vA + æ * rB>A + 1vB>A2xyz

aB = aA + aB>A = aA + A * rB>A - v2rB>A
vB = vA + vB>A = vA + V * rB>A

BA
AB

A

a = A * r - v2ran = v2rat = ar
v = V * rv = vr

Motion of Point P. Once and have been determined, then the
circular motion of point can be specified using the following scalar or
vector equations.

P
AV
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acting on the body.Also, establish the directions of the acceleration of the
mass center and the angular acceleration of the body. (A kinetic diagram
may also be drawn in order to represent and graphically. This
diagram is particularly convenient for resolving into components
and for identifying the terms in the moment sum )

The three equations of motion are

In particular, if the body is rotating about a fixed axis, moments may
also be summed about point on the axis, in which case

Work and Energy. The equation of work and energy is used to solve
problems involving force, velocity, and displacement. Before applying this
equation, always draw a free-body diagram of the body in order to
identify the forces which do work. Recall that the kinetic energy of the
body is due to translational motion of the mass center, , and rotational
motion of the body, .

where

(variable force)

(constant force)

(weight)

(spring)

(constant couple moment)

If the forces acting on the body are conservative forces, then apply 
the conservation of energy equation. This equation is easier to use than
the equation of work and energy, since it applies only at two points on the
path and does not require calculation of the work done by a force as the
body moves along the path.

where and 

Ve = 1
2ks

2 1elastic potential energy2
Vg = Wy 1gravitational potential energy2

V = Vg + Ve

T1 + V1 = T2 + V2

UM = Mu

Us = -112ks2
2 - 1

2ks
2
12

UW = -W ¢y

UFc = Fc cos u1s2 - s12
UF = 1 F cos u ds

T = 1
2 mv

2
G + 1

2 IGv
2

T1 + ©U1-2 = T2

V

vG

©MO = ©1mk2O = IOa

O

©MG = IGa or ©MP = ©1mk2P
©Fy = m1aG2y
©Fx = m1aG2x

©1mk2P.
maG
IGAmaG
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Impulse and Momentum. The principles of linear and angular
impulse and momentum are used to solve problems involving force,
velocity, and time. Before applying the equations, draw a free-body
diagram in order to identify all the forces which cause linear and angular
impulses on the body. Also, establish the directions of the velocity of the
mass center and the angular velocity of the body just before and just after
the impulses are applied. (As an alternative procedure, the impulse and
momentum diagrams may accompany the solution in order to graphically
account for the terms in the equations. These diagrams are particularly
advantageous when computing the angular impulses and angular
momenta about a point other than the body’s mass center.)

or

Conservation of Momentum. If nonimpulsive forces or no
impulsive forces act on the body in a particular direction, or if the motions
of several bodies are involved in the problem, then consider applying the
conservation of linear or angular momentum for the solution.
Investigation of the free-body diagram (or the impulse diagram) will aid
in determining the directions along which the impulsive forces are zero, or
axes about which the impulsive forces create zero angular impulse. For
these cases,

The problems that follow involve application of all the above concepts.
They are presented in random order so that practice may be gained at
identifying the various types of problems and developing the skills
necessary for their solution.

1HO21 = 1HO22
m1vG21 = m1vG22

© 1 MO dt = 1HO221HO21 +

© 1 MG dt = 1HG221HG21 +

© 1 F dt = m1vG22m1vG21 +
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P

PR

4 in.

8 in.

D

2 in.

S

20 rad/s

R

s

v

Probs. R2–1/2

REVIEW PROBLEMS

R2–5. The 6-lb slender rod is originally at rest, suspended
in the vertical position. Determine the distance where the
1-lb ball, traveling at , should strike the rod so
that it does not create a horizontal impulse at .What is the
rod’s angular velocity just after the impact? Take .e = 0.5

A
v = 50 ft>s

d

R2–3. The 6-lb slender rod is released from rest when
it is in the horizontal position so that it begins to rotate
clockwise. A 1-lb ball is thrown at the rod with a velocity

. The ball strikes the rod at at the instant the
rod is in the vertical position as shown. Determine the
angular velocity of the rod just after the impact. Take

and .

*R2–4. The 6-lb slender rod is originally at rest,
suspended in the vertical position. A 1-lb ball is thrown at
the rod with a velocity and strikes the rod at .
Determine the angular velocity of the rod just after the
impact. Take and .d = 2 fte = 0.7

Cv = 50 ft>s
AB

d = 2 fte = 0.7

Cv = 50 ft>s

AB

R2–1. An automobile transmission consists of the
planetary gear system shown. If the ring gear is held fixed
so that , and the shaft and sun gear , rotates at

, determine the angular velocity of each planet gear
and the angular velocity of the connecting rack , which

is free to rotate about the center shaft .

R2–2. An automobile transmission consists of the
planetary gear system shown. If the ring gear rotates at

, and the shaft and sun gear , rotates at
, determine the angular velocity of each planet gear

and the angular velocity of the connecting rack , which
is free to rotate about the center shaft .s

DP
20 rad>s

SsvR = 2 rad>s
R

s
DP

20 rad>s
SsvR = 0
R

R2–6. At a given instant, the wheel rotates with the
angular motions shown. Determine the acceleration of the
collar at at this instant.A

A

B

C

d

� 50 ft/sv

3 ft

Probs. R2–3/4/5

A

60�

500 mm

B 150 mm

30�

� 8 rad/s
� 16 rad/s2a
v

Prob. R2–6
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R2–9. The gear rack has a mass of 6 kg, and the gears each
have a mass of 4 kg and a radius of gyration of 
about their center. If the rack is originally moving
downward at , when , determine the speed of the
rack when . The gears are free to rotate about
their centers, and .BA

s = 600 mm
s = 02 m>s

k = 30 mm

*R2–8. The 50-kg cylinder has an angular velocity of
when it is brought into contact with the surface at

. If the coefficient of kinetic friction is , determine
how long it will take for the cylinder to stop spinning. What
force is developed in link during this time? The axis of
the cylinder is connected to two symmetrical links. (Only

is shown.) For the computation, neglect the weight of
the links.
AB

AB

mk = 0.2C
30 rad>s

R2–7. The small gear which has a mass can be treated as
a uniform disk. If it is released from rest at , and rolls
along the fixed circular gear rack, determine the angular
velocity of the radial line at the instant .u = 90°AB

u = 0°
m

R2–10. The gear has a mass of 2 kg and a radius of
gyration . The connecting link (slender
rod) and slider block at have a mass of 4 kg and 1 kg,
respectively. If the gear has an angular velocity 
at the instant , determine the gear’s angular velocity
when .u = 0°

u = 45°
v = 8 rad>s

B
ABkA = 0.15 m

A

B

r

R

u

Prob. R2–7

BA

200 mm

500 mm

C

� 30 rad/sv

Prob. R2–8

s

A B

50 mm50 mm

Prob. R2–9

� 8 rad/s

0.6 m

45�

B

A

0.2 m

v

u

Prob. R2–10
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R2–13. The 10-lb cylinder rests on the 20-lb dolly. If the
system is released from rest, determine the angular velocity
of the cylinder in 2 s. The cylinder does not slip on the dolly.
Neglect the mass of the wheels on the dolly.

R2–14. Solve Prob. R2–13 if the coefficients of static and
kinetic friction between the cylinder and the dolly are

and , respectively.m = 0.2ms = 0.3

*R2–12. The revolving door consists of four doors which
are attached to an axle . Each door can be assumed to be
a 50-lb thin plate. Friction at the axle contributes a moment
of which resists the rotation of the doors. If a woman
passes through one door by always pushing with a force

perpendicular to the plane of the door as shown,
determine the door’s angular velocity after it has rotated
90°. The doors are originally at rest.

P = 15 lb

2 lb # ft
AB

*R2–11. The operation of a doorbell requires the use of
an electromagnet, that attracts the iron clapper that is
pinned at end and consists of a 0.2-kg slender rod to
which is attached a 0.04-kg steel ball having a radius of

If the attractive force of the magnet at is 0.5 N
when the switch is on, determine the initial angular
acceleration of the clapper. The spring is originally
stretched 20 mm.

C6 mm.

A
AB

R2–15. Gears and each have a weight of 0.4 lb and a
radius of gyration about their mass center of 

Link has a weight of 0.2 lb and a radius of
gyration of ( , whereas link has a weight of
0.15 lb and a radius of gyration of ( If a
couple moment of is applied to link and
the assembly is originally at rest, determine the angular
velocity of link when link has rotated 360°. Gear 
is prevented from rotating, and motion occurs in the
horizontal plane. Also, gear and link rotate together
about the same axle at .B

DEH

CABDE

ABM = 3 lb # ft
kDE)B = 4.5 in.
DEkAB)A = 3 in.

AB(kC)A = 2 in.
(kH)B =

CH

44 mm

50 mm

40 mm

A

B

C

k � 20 N/m

Prob. R2–11

A

7 ft

B

2.5 ft

3 ft

P � 15 lb

u

Prob. R2–12

0.5 ft

30�

Probs. R2–13/14

E

C

D

H B AM

3 in. 3 in.

Prob. R2–15
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R2–19. Determine the angular velocity of rod at the
instant . Rod moves to the left at a constant
speed of .

*R2–20. Determine the angular acceleration of rod at
the instant . Rod has zero velocity, i.e., ,
and an acceleration of to the right when

.u = 30°
aAB = 2 m>s2

vAB = 0ABu = 30°
CD

vAB = 5 m>s
ABu = 30°

CD

R2–17. The hoop (thin ring) has a mass of 5 kg and is
released down the inclined plane such that it has a backspin

and its center has a velocity as
shown. If the coefficient of kinetic friction between the
hoop and the plane is , determine how long the
hoop rolls before it stops slipping.

R2–18. The hoop (thin ring) has a mass of 5 kg and is
released down the inclined plane such that it has a backspin

and its center has a velocity as
shown. If the coefficient of kinetic friction between the
hoop and the plane is , determine the hoop’s
angular velocity 1 s after it is released.

mk = 0.6

vG = 3 m>sv = 8 rad>s

mk = 0.6

vG = 3 m>sv = 8 rad>s

*R2–16. The inner hub of the roller bearing rotates with
an angular velocity of , while the outer hub
rotates in the opposite direction at . Determine
the angular velocity of each of the rollers if they roll on the
hubs without slipping.

vo = 4 rad>s
vi = 6 rad>s

R2–21. If the angular velocity of the drum is increased
uniformly from when to when 
determine the magnitudes of the velocity and acceleration
of points and on the belt when . At this instant
the points are located as shown.

t = 1 sBA

t = 5 s,12 rad>st = 06 rad>s

o � 4 rad/s

25 mm

50 mm

i � 6 rad/sv

v

Prob. R2–16

G

0.5 m

30�

� 8 rad/s

� 3 m/svG

v

Probs. R2–17/18

A

C

vAB

B

D

0.3 m
CD

u

v

Probs. R2–19/20

45�
4 in.

A

B

Prob. R2–21
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*R2–24. The pavement roller is traveling down the incline
at when the motor is disengaged. Determine the
speed of the roller when it has traveled 20 ft down the
plane. The body of the roller, excluding the rollers, has a
weight of 8000 lb and a center of gravity at . Each of the
two rear rollers weighs 400 lb and has a radius of gyration of

The front roller has a weight of 800 lb and a
radius of gyration of The rollers do not slip as
they turn.

kB = 1.8 ft.
kA = 3.3 ft.

G

v1 = 5 ft>s

R2–23. By pressing down with the finger at , a thin ring
having a mass is given an initial velocity and a
backspin when the finger is released. If the coefficient of
kinetic friction between the table and the ring is ,
determine the distance the ring travels forward before the
backspin stops.

m

v1

v1m
B

R2–22. Pulley and the attached drum have a weight
of 20 lb and a radius of gyration of If pulley 
“rolls” downward on the cord without slipping, determine
the speed of the 20-lb crate at the instant .
Initially, the crate is released from rest when For
the calculation, neglect the mass of pulley and the cord.P

s = 5 ft.
s = 10 ftC

PkB = 0.6 ft.
BA

R2–25. The cylinder rolls on the fixed cylinder without
slipping. If bar rotates with an angular velocity

, determine the angular velocity of cylinder .
Point is a fixed point.C

BvCD = 5 rad>s
CD

AB

0.8 ft

0.4 ft

0.2 ft

A
B

C

P

s

Prob. R2–22

B

1

1

v

r

A

v

Prob. R2–23

B

G

4.5 ft

2.2 ft
5 ft

10 ft

30�

A

3.8 ft

Prob. R2–24

A

B

C

D
0.1 m 0.3 m

CD � 5 rad/sv

Prob. R2–25
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R2–29. The spool has a weight of 30 lb and a radius of
gyration A cord is wrapped around the spool’s
inner hub and its end subjected to a horizontal force

. Determine the spool’s angular velocity in 4 s
starting from rest. Assume the spool rolls without slipping.
P = 5 lb

kO = 0.45 ft.

R2–27. The tub of the mixer has a weight of 70 lb and a
radius of gyration about its center of gravity .
If a constant torque is applied to the dumping
wheel, determine the angular velocity of the tub when it has
rotated . Originally the tub is at rest when .
Neglect the mass of the wheel.

*R2–28. Solve Prob. R2–27 if the applied torque is
, where is in radians.uM = (50u) lb # ft

u = 0°u = 90°

M = 60 lb # ft
GkG = 1.3 ft

R2–26. The disk has a mass and a radius . If a block of
mass is attached to the cord, determine the angular
acceleration of the disk when the block is released from
rest. Also, what is the distance the block falls from rest in
the time ?t

m
RM

R2–30. The 75-kg man and 40-kg boy sit on the horizontal
seesaw, which has negligible mass. At the instant the man
lifts his feet from the ground, determine their accelerations
if each sits upright, i.e., they do not rotate. The centers of
mass of the man and boy are at and , respectively.GbGm

R2–31. A sphere and cylinder are released from rest on
the ramp at . If each has a mass and a radius ,
determine their angular velocities at time . Assume no
slipping occurs.

t
rmt = 0

R

Prob. R2–26

G

0.8 ft

M

u

Probs. R2–27/28

P � 5 lb

0.9 ft

0.3 ft

A

O

Prob. R2–29

2 m 1.5 m

A

Gb Gm

Prob. R2–30

u

Prob. R2–31
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R2–35. The bar is confined to move along the vertical and
inclined planes. If the velocity of the roller at is

when , determine the bar’s angular
velocity and the velocity of at this instant.

*R2–36. The bar is confined to move along the vertical
and inclined planes. If the roller at has a constant velocity
of , determine the bar’s angular acceleration and
the acceleration of when .u = 45°B
vA = 6 ft>s

A

B
u = 45°vA = 6 ft>s

A

R2–34. The spool and the wire wrapped around its core
have a mass of 50 kg and a centroidal radius of gyration of

. If the coefficient of kinetic friction at the
surface is , determine the angular acceleration of
the spool after it is released from rest.

mk = 0.15
kG = 235 mm

*R2–32. At a given instant, link has an angular
acceleration and an angular velocity

. Determine the angular velocity and angular
acceleration of link at this instant.

R2–33. At a given instant, link has an angular
acceleration and an angular velocity

. Determine the angular velocity and angular
acceleration of link at this instant.AB
vCD = 2 rad>s

aCD = 5 rad>s2
CD

CD
vAB = 4 rad>s

aAB = 12 rad>s2
AB

R2–37. The uniform girder has a mass of 8 Mg.
Determine the internal axial force, shear, and bending
moment at the center of the girder if a crane gives it an
upward acceleration of .3 m>s2

AB

0.1 m

B

0.4 m

45�

G

Prob. R2–34

A

B

5 ft

30�

vB

vA

u

Probs. R2–35/36

C

A B

3 m/s2

4 m 60� 60�

Prob. R2–37

B 2 ft

45�

60�2.5 ft

1.5 ft

C

D
A

CD
AB

AB

CDa

a
v

v

Probs. R2–32/33
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*R2–40. A cord is wrapped around the rim of each 10-lb
disk. If disk is released from rest, determine the angular
velocity of disk in 2 s. Neglect the mass of the cord.

R2–41. A cord is wrapped around the rim of each 10-lb
disk. If disk is released from rest, determine how much
time is required before attains an angular velocity

.vA = 5 rad>s
At

B

A
B

R2–39. The 5-lb rod supports the 3-lb disk at its end .
If the disk is given an angular velocity while
the rod is held stationary and then released, determine the
angular velocity of the rod after the disk has stopped
spinning relative to the rod due to frictional resistance at the
bearing . Motion is in the horizontal plane. Neglect friction
at the fixed bearing .B

A

vD = 8 rad>s
AAB

R2–38. Each gear has a mass of 2 kg and a radius of gyration
about its pinned mass centers and of .
Each link has a mass of 2 kg and a radius of gyration about
its pinned ends and of . If originally the
spring is unstretched when the couple moment

is applied to link , determine the angular
velocities of the links at the instant link rotates 
Each gear and link is connected together and rotates in the
horizontal plane about the fixed pins and .BA

u = 45°.AC
ACM = 20 N # m

kl = 50 mmBA

kg = 40 mmBA

R2–42. The 15-kg disk is pinned at and is initially at rest.
If a 10-g bullet is fired into the disk with a velocity of

, as shown, determine the maximum angle to which
the disk swings. The bullet becomes embedded in the disk.

u200 m>s
O

A

B

3 ft

0.5 ft

D
v

Prob. R2–39

B
0.5 ft

0.5 ft
A O

Probs. R2–40/41

200 mm

k � 200 N/m

50 mm

50 mm

A
M

C

DB

Prob. R2–38

0.15 m

30�
200 m/s

O

u

Prob. R2–42
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R2–45. Shown is the internal gearing of a “spinner” used
for drilling wells. With constant angular acceleration, the
motor rotates the shaft to in 
starting from rest. Determine the angular acceleration of
the drill-pipe connection and the number of revolutions
it makes during the 2-s startup.

D

t = 2 s100 rev>minSM

*R2–44. The operation of “reverse” for a three-speed
automotive transmission is illustrated schematically in the
figure. If the shaft is turning with an angular velocity of

, determine the angular velocity of the drive
shaft . Each of the gears rotates about a fixed axis. Note
that gears and , and , and are in mesh. The
radius of each of these gears is reported in the figure.

FEDCBA
H

vG = 60 rad>s
G

R2–43. The disk rotates at a constant rate of as it
falls freely so that its center has an acceleration of

. Determine the accelerations of points and on
the rim of the disk at the instant shown.

BA32.2 ft>s2
G

4 rad>s

R2–46. Gear has a mass of 0.5 kg and a radius of
gyration of , and gear has a mass of 0.8 kg
and a radius of gyration of . The link is pinned
at and has a mass of 0.35 kg. If the link can be treated as a
slender rod, determine the angular velocity of the link after
the assembly is released from rest when and falls to

.u = 90°
u = 0°

C
kB = 55 mm

BkA = 40 mm
A

E

H

F C

D

B

A

G

G � 60 rad/s

H

rA � 90 mm
rB � rC � 30 mm
rD � 50 mm
rE � 70 mm
rF � 60 mm

v

v

Prob. R2–44

60 mm
150 mm

D

M

S

Prob. R2–45

C

125 mm

50 mm

75 mm

A

B
125 mm

u

Prob. R2–46

B

A

1.5 ft
� 4 rad/s

G

v

Prob. R2–43
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R2–49. If the thin hoop has a weight and radius and is
thrown onto a rough surface with a velocity parallel to
the surface, determine the backspin, , it must be given so
that it stops spinning at the same instant that its forward
velocity is zero. It is not necessary to know the coefficient of
kinetic friction at for the calculation.A

V

vG
rW

*R2–48. If link rotates at , determine
the angular velocities of links and at the instant
shown.

CDBC
vAB = 6 rad>sAB

R2–47. The 15-kg cylinder rotates with an angular
velocity of . If a force is applied to
bar , as shown, determine the time needed to stop the
rotation. The coefficient of kinetic friction between and
the cylinder is . Neglect the thickness of the bar.mk = 0.4

AB
AB

F = 6 Nv = 40 rad>s

R2–50. The wheel has a mass of 50 kg and a radius of
gyration . If it rolls without slipping down the
inclined plank, determine the horizontal and vertical
components of reaction at , and the normal reaction at the
smooth support at the instant the wheel is located at the
midpoint of the plank. The plank has negligible thickness
and has a mass of 20 kg.

B
A

kG = 0.4 m

400 mm 500 mm

A B

F � 6 N

C
150 mm

v

Prob. R2–47

AB � 6 rad/s

A

B C

D
60�

30�

400 mm

300 mm

250 mm
v

Prob. R2–48

G
Gv

r

A

v

Prob. R2–49

30�

2 m

2 m

A

B

0.6 m

G

Prob. R2–50



The three-dimensional motion of this industrial robot must be accurately specified.
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