Three-Dimensional
Kinetics of a Rigid 21
Body

CHAPTER OBJECTIVES

® To introduce the methods for finding the moments of inertia and

products of inertia of a body about various axes.

® To show how to apply the principles of work and energy and linear
and angular momentum to a rigid body having three-dimensional
motion.

® To develop and apply the equations of motion in three dimensions.

® To study gyroscopic and torque-free motion.

*21.1 Moments and Products of Inertia

When studying the planar kinetics of a body, it was necessary to introduce
the moment of inertia I;, which was computed about an axis
perpendicular to the plane of motion and passing through the body’s mass
center G. For the kinetic analysis of three-dimensional motion it will
sometimes be necessary to calculate six inertial quantities. These terms,
called the moments and products of inertia, describe in a particular way
the distribution of mass for a body relative to a given coordinate system
that has a specified orientation and point of origin.
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THREE-DIMENSIONAL KINETICS OF A RIGID BoDY

Moment of Inertia. Consider the rigid body shown in Fig. 21-1.
The moment of inertia for a differential element dm of the body about
any one of the three coordinate axes is defined as the product of the
mass of the element and the square of the shortest distance from the axis
to the element. For example, as noted in the figure, r, = Vy* + 72, so
that the mass moment of inertia of the element about the x axis is

dl,, = rdm = (y2 + zz) dm

The moment of inertia 7, for the body can be determined by integrating
this expression over the entire mass of the body. Hence, for each of the

axes, we can write
L, = /r,%dm = /(y2 + %) dm
m m

I, = / rodm = / (x2 + 22)dm (21-1)

I, = /r%dm = /(x2 + y?)dm

Here it is seen that the moment of inertia is always a positive quantity,
since it is the summation of the product of the mass dm, which is always
positive, and the distances squared.

Product of Inertia. The product of inertia for a differential
element dm with respect to a set of two orthogonal planes is defined as
the product of the mass of the element and the perpendicular (or
shortest) distances from the planes to the element. For example, this
distance is x to the y—z plane and it is y to the x—z plane, Fig. 21-1. The
product of inertia d 1., for the element is therefore

dl, = xydm
Note also that dI,, = dI,,. By integrating over the entire mass, the

products of inertia of the body with respect to each combination of
planes can be expressed as

iy S Me = /xy dm
m

e = oy = /yz dm (21-2)
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(a) (b)
Fig. 21-2

Unlike the moment of inertia, which is always positive, the product of
inertia may be positive, negative, or zero. The result depends on the
algebraic signs of the two defining coordinates, which vary independently
from one another. In particular, if either one or both of the orthogonal
planes are planes of symmetry for the mass, the product of inertia with
respect to these planes will be zero. In such cases, elements of mass will
occur in pairs located on each side of the plane of symmetry. On one side
of the plane the product of inertia for the element will be positive, while
on the other side the product of inertia of the corresponding element will
be negative, the sum therefore yielding zero. Examples of this are shown
in Fig. 21-2. In the first case, Fig. 21-2a, the y—z plane is a plane of
symmetry, and hence I, = I, = 0. Calculation of /,, will yield a
positive result, since all elements of mass are located using only positive
y and z coordinates. For the cylinder, with the coordinate axes located as
shown in Fig. 21-2b, the x—z and y—z planes are both planes of symmetry.
Thus, I,, = I,, = I, = 0.

Parallel-Axis and Parallel-Plane Theorems. The techniques
of integration used to determine the moment of inertia of a body were
described in Sec. 17.1. Also discussed were methods to determine the
moment of inertia of a composite body, i.e., a body that is composed of
simpler segments, as tabulated on the inside back cover. In both of these
cases the parallel-axis theorem is often used for the calculations. This
theorem, which was developed in Sec. 17.1, allows us to transfer the
moment of inertia of a body from an axis passing through its mass center
G to a parallel axis passing through some other point. If G has
coordinates xg, Vg, Zg defined with respect to the x, y, z axes, Fig. 21-3,
then the parallel-axis equations used to calculate the moments of inertia
about the x, y, z axes are

= Ix'x')G + m(yzG + Z%})

IXX
Iyy
Izz = Iz’ )G + m(x%? + )’%})

G
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XG

YG

Fig. 21-3 (repeated)

The dynamics of the space shuttle
while it orbits the earth can be
predicted only if its moments and
products of inertia are known
relative to its mass center.

The products of inertia of a composite body are computed in the same
manner as the body’s moments of inertia. Here, however, the parallel-
plane theorem is important. This theorem is used to transfer the products
of inertia of the body with respect to a set of three orthogonal planes
passing through the body’s mass center to a corresponding set of three
parallel planes passing through some other point O. Defining the
perpendicular distances between the planes as xg, ys and zg, Fig. 21-3,
the parallel-plane equations can be written as

Ixy = (Ix’y')G + mxgyc
Iyz = (Iy’z')G + mygzc (21-4)
Iy = (Iyy)e + mzgxg

The derivation of these formulas is similar to that given for the parallel-
axis equation, Sec. 17.1.

Inertia Tensor. The inertial properties of a body are therefore
completely characterized by nine terms, six of which are independent of
one another. This set of terms is defined using Egs. 21-1 and 21-2 and
can be written as

Ixx _Ixy _Ixz

—Iy, Iy, =1y,
-1 -1 I

x

This array is called an inertia tensor.* It has a unique set of values for a
body when it is determined for each location of the origin O and
orientation of the coordinate axes.

In general, for point O we can specify a unique axes inclination for
which the products of inertia for the body are zero when computed with
respect to these axes. When this is done, the inertia tensor is said to be
“diagonalized” and may be written in the simplified form

I, 0 0
0 I, 0
0 0 I,

Here I, = I, I, = I,,, and I, = I, are termed the principal moments
of inertia for the body, which are computed with respect to the principal
axes of inertia. Of these three principal moments of inertia, one will be a

maximum and another a minimum of the body’s moment of inertia.

*The negative signs are here as a consequence of the development of angular momentum,
Egs. 21-10.
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The mathematical determination of the directions of principal axes of
inertia will not be discussed here (see Prob. 21-20). However, there are
many cases in which the principal axes can be determined by inspection.
From the previous discussion it was noted that if the coordinate axes are
oriented such that two of the three orthogonal planes containing the axes
are planes of symmetry for the body, then all the products of inertia for
the body are zero with respect to these coordinate planes, and hence
these coordinate axes are principal axes of inertia. For example, the x, y,
z axes shown in Fig. 21-2b represent the principal axes of inertia for the
cylinder at point O.

Moment of Inertia About an Arbitrary Axis. Consider the
body shown in Fig. 21-4, where the nine elements of the inertia tensor
have been determined with respect to the x, y, z axes having an origin at
O. Here we wish to determine the moment of inertia of the body about
the Oa axis, which has a direction defined by the unit vector u,. By
definition I, = f b*>dm, where b is the perpendicular distance from dm
to Oa. If the position of dm is located using r, then b = r sin 6, which
represents the magnitude of the cross product u, X r. Hence, the
moment of inertia can be expressed as

Io. = /I(ua X r)|?dm = /(ua X 1) (u, X r)dm
m m
Provided w, = u,i + u,j + u k and r = xi + yj + 2k, then u, X r =

(yz —uY)i + (ux —uz)j + (uyy —uyx)k. After substituting and
performing the dot-product operation, the moment of inertia is

Io, = /[(uyz - ”z}’)z + (ux — uxz)z + (uy — uyx)z]dm
_ u;/(ﬁ + 22)dm + ui/(f + x)dm + u%/(x2 + y?) dm

- 2uxuy/xy dm — 2uyuz/yz dm — ZuZux/zx dm
m m m

Recognizing the integrals to be the moments and products of inertia of
the body, Egs. 21-1 and 21-2, we have

log = Loz + Loy, + Lu? — 2L, — 2L uu, —2Luu, | (21-5)

Thus, if the inertia tensor is specified for the x, y, z axes, the moment of
inertia of the body about the inclined Oa axis can be found. For the
calculation, the direction cosines u,,u,,u, of the axes must be
determined. These terms specify the cosines of the coordinate direction
angles «,3,y made between the positive Oa axis and the positive x, y, z
axes, respectively (see Appendix C).

/‘ua

§7b=rsin6
0
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EXAMPLE |21.1

Determine the moment of inertia of the bent rod shown in Fig. 21-5a
about the Aa axis. The mass of each of the three segments is given in
the figure.

SOLUTION
Before applying Eq. 21-5, it is first necessary to determine the
moments and products of inertia of the rod with respect to the x, y, z
axes. This is done using the formula for the moment of inertia of a
slender rod, [ = émlz, and the parallel-axis and parallel-plane
theorems, Egs. 21-3 and 21-4. Dividing the rod into three parts and
locating the mass center of each segment, Fig. 21-5b, we have
L = [5(2)(02)° + 2(0.0%] + [0 + 2(0. 2)21
+ [5(4)(04) + 4((02)* + (02))] =
I, = [$(2)(02) + 2(0.1)%] + [5(2)(02)2 + 2( 0.1)% + (0.2)%)]
+ [0 + 4((—0.2)% + (0.2)%)] = 0.453 kg - m?
= [0+ 0] + [$5(2)(02)2 + 2(—0.1)%] + [$5(4)(0.4)? +

4((—02)% + (0.2)%)] = 0.400 kg - m?
I, =[0+0] +[0+0] +[0+4(-0.2)(02)] = —0.160 kg-m?
I, =0+ 0] + [0+ 0] + [0+ 4(0.2)(0.2)] = 0.160 kg - m?
I, =1[0+0]+ [0+ 2(02)(—-0.1)] +

[0 + 4(0.2)(—0.2)] = —0.200 kg - m?

= 0.480 kg - m>

(-
)

z The Aa axis is defined by the unit vector

—0.2i + 0.4j + 0.2k
01,5 02) g =2 = ' L — —0.408i + 0.816j + 0.408k

™ V(=02) + (04) + (0.2)?

y "
C
\ 4k
B & Thus,

(=02,02,0.2)
@ w, = 0408  u,=0816 u, = 0408

A Substituting these results into Eq. 21-5 yields

(b) Ly, = L + Iyyuy + I, u — 2Ly, — 21,0, — 2L uu,
Fig. 21-5 = 0.480(—0.408) + (0.453)(0.816) + 0.400(0.408)>

— 2(—0.160)(—0.408)(0.816) — 2(0.160)(0.816)(0.408)

— 2(—0.200)(0.408)(—0.408)

= 0.169 kg - m? Ans.




PROBLEMS

*21-1. Show that the sum of the moments of inertia of a
body, I,, + I,, + I, is independent of the orientation of
the x, y, z axes and thus depends only on the location of its
origin.

21-2. Determine the moment of inertia of the cone with
respect to a vertical y axis that passes through the cone’s
center of mass. What is the moment of inertia about a parallel
axis y’ that passes through the diameter of the base of the
cone? The cone has a mass m.

Prob. 21-2

21-3. Determine the moments of inertia /, and I, of the
paraboloid of revolution. The mass of the paraboloid is m.

Prob. 21-3
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*21-4. Determine by direct integration the product of
inertia /,, for the homogeneous prism. The density of the
material is p. Express the result in terms of the total mass m
of the prism.

e21-5. Determine by direct integration the product of
inertia I, for the homogeneous prism. The density of the
material is p. Express the result in terms of the total mass m
of the prism.

Probs. 21-4/5

21-6. Determine the product of inertia I, for the
homogeneous tetrahedron. The density of the material is p.
Express the result in terms of the total mass m of the solid.
Suggestion: Use a triangular element of thickness dz and
then express dl,, in terms of the size and mass of the
element using the result of Prob. 21-5.

/a ’
—

Prob. 21-6
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21-7. Determine the moments of inertia for the
homogeneous cylinder of mass m about the x', y’, z’ axes.

le—r 7
X

\ |
1

z

Prob. 21-7

*21-8. Determine the product of inertia I,, of the
homogeneous triangular block. The material has a density
of p. Express the result in terms of the total mass m of the
block.

Prob. 21-8

THREE-DIMENSIONAL KINETICS OF A RIGID BoDY

¢21-9. The slender rod has a mass per unit length of
6 kg/m. Determine its moments and products of inertia
with respect to the x, y, z axes.

2m O
y
x 2 m\}/
2m
Prob. 21-9

21-10. Determine the products of inertia I, 1., and 1,
of the homogeneous solid. The material has a density of
7.85 Mg/m°.

200 mﬁ\

200 mm

-

100 mm \
x 200@ y
200%/

Prob. 21-10
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21-11. The assembly consists of two thin plates A and B ¢21-13. The bent rod has a weight of 1.5 Ib/ft. Locate the

which have a mass of 3 kg each and a thin plate C which has center of gravity G(x, y) and determine the principal
a mass of 4.5 kg. Determine the moments of inertia I,, I, moments of inertia I/, I,,, and I, of the rod with respect to
and I,. the x', y', 7’ axes.

G
17 =7
y
/4/
X x'
Prob. 21-11 Prob. 21-13
*21-12. Determine the products of inertia Ixy, Iyz, and 21-14. The assembly consists of a 10-1b slender rod and a
I, of the thin plate. The material has a density per unit 30-1b thin circular disk. Determine its moment of inertia
area of 50 kg/m>. about the y' axis.
z

Prob. 21-12 Prob. 21-14
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21-15. The top consists of a cone having a mass of 0.7 kg
and a hemisphere of mass 0.2 kg. Determine the moment of
inertia /, when the top is in the position shown.

Prob. 21-15

*21-16. Determine the products of inertia /,,, /., and
I, of the thin plate. The material has a mass per unit area

of 50 kg/m?>.

Prob. 21-16

THREE-DIMENSIONAL KINETICS OF A RIGID BoDY

*21-17. Determine the product of inertia I, for the bent
rod. The rod has a mass per unit length of 2 kg/m.

21-18. Determine the moments of inertia /Iy, Iy, I, for
the bent rod. The rod has a mass per unit length of 2 kg/m.

400 mm

600 mm

500 mm —

Probs. 21-17/18

21-19. Determine the moment of inertia of the rod-and-
thin-ring assembly about the z axis. The rods and ring have
a mass per unit length of 2 kg/m.

Prob. 21-19



21.2 Angular Momentum

In this section we will develop the necessary equations used to determine
the angular momentum of a rigid body about an arbitrary point. These
equations will provide a means for developing both the principle of impulse
and momentum and the equations of rotational motion for a rigid body.

Consider the rigid body in Fig. 21-6, which has a mass m and center of
mass at G. The X, Y, Z coordinate system represents an inertial frame of
reference, and hence, its axes are fixed or translate with a constant
velocity. The angular momentum as measured from this reference will be
determined relative to the arbitrary point A. The position vectors r 4 and
p 4 are drawn from the origin of coordinates to point A and from A to
the ith particle of the body. If the particle’s mass is m;, the angular
momentum about point A is

(Hy); = pa X myv;

where v; represents the particle’s velocity measured from the X, Y, Z
coordinate system. If the body has an angular velocity w at the instant
considered, v; may be related to the velocity of A by applying Eq.20-7,1i.e.,

Vi=V4+t w X py
Thus,
(Ha)i = pa X mi(vy + @ X py)
= (pam;) X vy + py X (0 X py)m;

Summing the moments of all the particles of the body requires an
integration. Since m; — dm, we have

HA:</pAdm)><vA+/pAX(prA)dm (21-6)

z /Q /\‘w

Iy

Inertial coordinate system

Fig. 21-6

21.2 ANGULAR MOMENTUM
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Fig. 21-7

Fixed Point O. If A becomes a fixed point O in the body, Fig. 21-7a,
then v, = 0 and Eq. 21-6 reduces to

Hy = /PO X (@ X po)dm (21-7)

Center of Mass G. If A is located at the center of mass G of the
body, Fig.21-7b,then [ p 4, dm = 0 and

H; = /PG X (@ X pg)dm (21-8)

Arbitrary Point A. In general, A can be a point other than O or G,
Fig. 21-7¢c, in which case Eq. 21-6 may nevertheless be simplified to the
following form (see Prob. 21-21).

’ HA = PG/A X mvg arF HG‘ (21—9)

Here the angular momentum consists of two parts—the moment of the
linear momentum mvg of the body about point A added (vectorially) to
the angular momentum Hg;. Equation 21-9 can also be used to
determine the angular momentum of the body about a fixed point O.
The results, of course, will be the same as those found using the more
convenient Eq. 21-7.

Rectangular Components of H. To make practical use of
Eqgs. 21-7 through 21-9, the angular momentum must be expressed in
terms of its scalar components. For this purpose, it is convenient to
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choose a second set of x, y, z axes having an arbitrary orientation
relative to the X, Y, Z axes, Fig. 21-7, and for a general formulation,
note that Egs. 21-7 and 21-8 are both of the form

H=/p><(w><p)dm
m
Expressing H, p, and w in terms of x, y, z components, we have

H.i+ H,j+ Hk = /(xi + yj + 7k) X [(o,d + 0,j + o k)

X (xi + yj + zk)]dm

Expanding the cross products and combining terms yields
Hi + H,j + Hk = [a)x/(y2 + 22)dm — wy/xy dm — wz/xzdm}i

+ {—wx/xydm + wy/(xz + 2%)dm — a)z/yz dm]j
+ [—wx/zx dm — a)y/yz dm + wz/(x2 + yz)dm}k

Equating the respective i, j, k components and recognizing that the
integrals represent the moments and products of inertia, we obtain

H, = Il,o, — Ixywy - Ixzwz
H, = I, + 1o, - 1o, (21-10)

H,=-l,0, - o, + [0,

These equations can be simplified further if the x, y, z coordinate axes
are oriented such that they become principal axes of inertia for the body
at the point. When these axes are used, the products of inertia
L., = I,, = I, = 0, and if the principal moments of inertia about the x,
), z axes are represented as I, = I, I, = I,,,, and I, = I, the three
components of angular momentum become

H, = Lo, H, = Lo, H, = Lo, (21-11)

591



592 CHAPTER 21 THREE-DIMENSIONAL KINETICS OF A RIGID BobDyY

The motion of the astronaut is
controlled by use of small directional jets
attached to his or her space suit. The
impulses these jets provide must be
carefully specified in order to prevent
tumbling and loss of orientation.

N
N\ R

Pa

T4

Inertial coordinate system

Fig. 21-8

Principle of Impulse and Momentum. Now that the
formulation of the angular momentum for a body has been developed,
the principle of impulse and momentum, as discussed in Sec. 19.2, can be
used to solve kinetic problems which involve force, velocity, and time. For
this case, the following two vector equations are available:

m(vg); + E/ 2F dt = m(vg), (21-12)
(HO)I I E/tZMO dt = (H0)2 (21—13)

In three dimensions each vector term can be represented by three scalar
components, and therefore a total of six scalar equations can be written.
Three equations relate the linear impulse and momentum in the x, y, z
directions, and the other three equations relate the body’s angular
impulse and momentum about the x, y, z axes. Before applying Eqgs. 21-12
and 21-13 to the solution of problems, the material in Secs. 19.2 and 19.3
should be reviewed.

21.3 Kinetic Energy

In order to apply the principle of work and energy to solve problems
involving general rigid body motion, it is first necessary to formulate
expressions for the kinetic energy of the body. To do this, consider the
rigid body shown in Fig. 21-8, which has a mass m and center of mass at
G. The kinetic energy of the ith particle of the body having a mass m;
and velocity v;, measured relative to the inertial X, Y, Z frame of
reference, is

1 i
T, = smui = 5m(vi*v;)

Provided the velocity of an arbitrary point A in the body is known, v; can
be related to v, by the equation v; = v, + @ X p,, where w is the
angular velocity of the body, measured from the X, Y, Z coordinate
system, and p 4 is a position vector extending from A to i. Using this
expression, the kinetic energy for the particle can be written as

1
Ti=3mi(va+ @ X py):(vy4 + @ X py)
= %(VA‘VA)mi +va (@ X pg)m; + %(w X pa) (@ X py)m;

The kinetic energy for the entire body is obtained by summing the
kinetic energies of all the particles of the body. This requires an
integration. Since m; — dm, we get

T=%m(vA-vA) + VA'<w X/

m

pAdm) * %/(«» X ) (@ X pa)dm



The last term on the right can be rewritten using the vector identity
aXb-c=a-bXc¢ where a=w, b= py, and ¢ = o X py. The
final result is

T = %m(VA'VA) + VA-(w X /pAdm)

+ ;w-/pA X (@ X py)dm (21-14)

This equation is rarely used because of the computations involving the
integrals. Simplification occurs, however, if the reference point A is
either a fixed point or the center of mass.

Fixed Point O. If A is a fixed point O in the body, Fig. 21-7a, then
v4 = 0, and using Eq. 21-7, we can express Eq.21-14 as

T =30 -Hp

If the x, y, z axes represent the principal axes of inertia for the body, then
® = o+ oj+t okand Hy = [Lo,i + l,w,j + Lo k. Substituting
into the above equation and performing the dot-product operations yields

T =;L0% + 31,05 + 5 L2 (21-15)

Center of Mass G. 1If A is located at the center of mass G of the
body, Fig. 21-7b, then pr dm = 0 and, using Eq. 21-8, we can write
Eq.21-14 as

T Z%mv%; +%w-HG

In a manner similar to that for a fixed point, the last term on the right
side may be represented in scalar form, in which case

T =Lmo} + 1o + L 0? + 1102 (21-16)

Here it is seen that the kinetic energy consists of two parts; namely, the
translational kinetic energy of the mass center, %mv%;, and the body’s
rotational kinetic energy.

Principle of Work and Energy. Having formulated the kinetic
energy for a body, the principle of work and energy can be applied to
solve kinetics problems which involve force, velocity, and displacement.
For this case only one scalar equation can be written for each body,
namely,

Tl F 2U1,2 = T2 (21—17)

Before applying this equation, the material in Chapter 18 should be
reviewed.

21.3  KINETIC ENERGY
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EXAMPLE |21.2

bS

The rod in Fig. 21-9a has a weight per unit length of 1.5I1b/ft.
Determine its angular velocity just after the end A falls onto the hook
at E. The hook provides a permanent connection for the rod due to
the spring-lock mechanism S. Just before striking the hook the rod is
falling downward with a speed (vg); = 10 ft/s.

SOLUTION

The principle of impulse and momentum will be used since impact
occurs.

Impulse and Momentum Diagrams. Fig. 21-9b. During the short
time At, the impulsive force F acting at A changes the momentum of
the rod. (The impulse created by the rod’s weight W during this time
is small compared to f F dt, so that it can be neglected, i.e., the weight
is a nonimpulsive force.) Hence, the angular momentum of the rod is
conserved about point A since the moment of f F dt about A is zero.
Conservation of Angular Momentum. Equation 21-9 must be
used to find the angular momentum of the rod, since A does not
become a fixed point until after the impulsive interaction with the
hook. Thus, with reference to Fig. 21-9b, (H,); = (H,),, or

1G4 X m(vg)1 = ¥ga X m(vg), + (Hg)s (1)
From Fig. 21-9a, rg/4 = {—0.667i + 0.5j} ft. Furthermore, the
primed axes are principal axes of inertia for the rod because I, =
I, =1,,=0. Hence, from Eqgs. 21-11, (Hg), = lyo,i+
I o,j + Lo k. The principal moments of inertia are [I,=
0.0272 slug - ft?, I,, = 0.0155 slug - ft*, I, = 0.0427 slug - ft* (see Prob.
21-13). Substituting into Eq. 1, we have

(34252> (—101()} — (-0.667i + 0.5)) [<34252> - Uc)zk}

+ 0.0272w,i + 0.0155w,j + 0.0427w_k
Expanding and equating the respective i, j, k components yields

(0.667i + 0.5§) X

—0.699 = —0.0699(v5), + 0.0272w, ©)
—0.932 = —0.0932(vg), + 0.01550, ?3)
0 = 0.0427w, 4)

Kinematics. There are four unknowns in the above equations;
however, another equation may be obtained by relating @ to (vg),
using kinematics. Since w, = 0 (Eq.4) and after impact the rod rotates
about the fixed point A, Eq. 20-3 can be applied, in which case
(VG)2 = @ X 1G4, OT
—(v6)2k = (0,i + w,j) X (—0.667i + 0.5j)
_(vG)Z = O'wa + 0667wy (5)
Solving Egs. 2, 3 and 5 simultaneously yields
(vg)r = {—8.41k} ft/s o = {—4.091 — 9.55j} rad/s Ans.
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EXAMPLE |21.3

A 5-N-m torque is applied to the vertical shaft CD shown in
Fig. 21-10a, which allows the 10-kg gear A to turn freely about CE.
Assuming that gear A starts from rest, determine the angular
velocity of CD after it has turned two revolutions. Neglect the mass
of shaft CD and axle CE and assume that gear A can be
approximated by a thin disk. Gear B is fixed.

SOLUTION
The principle of work and energy may be used for the solution. Why?

Work. If shaft CD,the axle CE, and gear A are considered as a system
of connected bodies, only the applied torque M does work. For two
revolutions of CD, this work is 2U;_, = (SN -+m) (47 rad) = 62.83 J.

Kinetic Energy. Since the gear is initially at rest, its initial kinetic
energy is zero. A kinematic diagram for the gear is shown in Fig. 21-10b.

If the angular velocity of CD is taken as w¢p, then the angular velocity
ofgear Ais w4 = wcp + wcp. The gear may be imagined as a portion
of a massless extended body which is rotating about the fixed point C.
The instantaneous axis of rotation for this body is along line CH,
because both points C and H on the body (gear) have zero velocity and
must therefore lie on this axis. This requires that the components wcp
and wcg be related by the equation wcp/0.1 m = wcg/0.3 m or
WcE = 3wCD.Thus,

Instantaneous
¢z axis of rotation

Wy = —wCEi P wCDk = —3wCDi ot wCDk (1)

The x, y, z axes in Fig. 21-10a represent principal axes of inertia at C Fig. 21-10
for the gear. Since point C is a fixed point of rotation, Eq. 21-15 may
be applied to determine the kinetic energy, i.e.,

T = 31wl + 510}

1
2 lywy + Elzwg (2

Using the parallel-axis theorem, the moments of inertia of the gear
about point C are as follows:

I, = 3(10kg)(0.1 m)? = 0.05 kg - m?
I, =1, =4(10kg)(0.1 m)®> + 10kg(0.3 m)?* = 0.925 kg - m?
Since w, = —3wcp, w, = 0, v, = wcp, Eq.2 becomes

Ty = 2(0.05)(=3wcp)? + 0 + 3(0.925)(wcp)? = 0.6875w¢p

Principle of Work and Energy. Applying the principle of work and
energy, we obtain

Tl ot EUl—Z = T2
0 + 62.83 = 0.6875w¢p
wcp = 9.56 rad/s Ans.
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*21-20. If a body contains no planes of symmetry, the
principal moments of inertia can be determined
mathematically. To show how this is done, consider the rigid
body which is spinning with an angular velocity o, directed
along one of its principal axes of inertia. If the principal
moment of inertia about this axis is /, the angular momentum
can be expressed as H = [w = lw,i + lo,j + [w_ k. The
components of H may also be expressed by Egs. 21-10,
where the inertia tensor is assumed to be known. Equate the
1, j, and k components of both expressions for H and consider
wy, wy, and o, to be unknown. The solution of these three
equations is obtained provided the determinant of the
coefficients is zero. Show that this determinant, when
expanded, yields the cubic equation

PP = (I + Iy, + L)I?

t (Ldyy + 1l + 10 — I3y — I3, — 12)]
= (Lodyy I, = 20,0 0 — 1,05,
— 1,02, — I13) =0

The three positive roots of 7, obtained from the solution of
this equation, represent the principal moments of inertia
I, 1,,and I..

Prob. 21-20

¢21-21. Show that if the angular momentum of a body is
determined with respect to an arbitrary point A, then H 4
can be expressed by Eq. 21-9. This requires substituting
Pa = PG T Pg/a into Eq. 21-6 and expanding, noting
that f pg dm = 0 by definition of the mass center and
Vg = V4 + prG/A'

Prob. 21-21

21-22. The 4-1b rod AB is attached to the disk and collar
using ball-and-socket joints. If the disk has a constant
angular velocity of 2 rad/s, determine the kinetic energy of
the rod when it is in the position shown. Assume the angular
velocity of the rod is directed perpendicular to the axis of
the rod.

21-23. Determine the angular momentum of rod AB in
Prob. 21-22 about its mass center at the instant shown.
Assume the angular velocity of the rod is directed
perpendicular to the axis of the rod.

Probs. 21-22/23



*21-24. The uniform thin plate has a mass of 15 kg. Just
before its corner A strikes the hook, it is falling with a
velocity of vg = {—5k} m/s with no rotational motion.
Determine its angular velocity immediately after corner A
strikes the hook without rebounding.
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21-27. The space capsule has a mass of 5 Mg and the
radii of gyration are k, = k, = 1.30 m and k, = 0.45 m.
If it travels with a velocity vg = {400j + 200k} m/s,
compute its angular velocity just after it is struck by a
meteoroid having a mass of 0.80 kg and a velocity
v,, = {—300i + 200j — 150k} m/s. Assume that the
meteoroid embeds itself into the capsule at point A and
that the capsule initially has no angular velocity.

Prob. 21-24

e21-25. The 5-kg disk is connected to the 3-kg slender
rod. If the assembly is attached to a ball-and-socket joint at
A and the 5-N - m couple moment is applied, determine the
angular velocity of the rod about the z axis after the
assembly has made two revolutions about the z axis starting
from rest. The disk rolls without slipping.

21-26. The 5-kg disk is connected to the 3-kg slender rod.
If the assembly is attached to a ball-and-socket joint at A
and the 5-N - m couple moment gives it an angular velocity
about the z axis of w, = 2 rad/s, determine the magnitude
of the angular momentum of the assembly about A.

Probs. 21-25/26

Prob. 21-27

*21-28. Each of the two disks has a weight of 10 1b. The
axle AB weighs 3 1b. If the assembly rotates about the z axis
at w, = 6 rad/s, determine its angular momentum about
the z axis and its kinetic energy. The disks roll without

slipping.

—
w, = 6rad/s

Prob. 21-28
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©21-29. The 10-kg circular disk spins about its axle with a
constant angular velocity of w; = 15 rad/s. Simultaneously,
arm OB and shaft OA rotate about their axes with constant
angular velocities of w, = 0 and w; = 6 rad/s, respectively.
Determine the angular momentum of the disk about point O,
and its kinetic energy.

21-30. The 10-kg circular disk spins about its axle with a
constant angular velocity of w; = 15 rad/s. Simultaneously,
arm OB and shaft OA rotate about their axes with constant
angular velocities of w, = 10rad/s and w; = 6rad/s,
respectively. Determine the angular momentum of the disk
about point O, and its kinetic energy.

z

P

x~ A 3

Probs. 21-29/30

21-31. The 200-kg satellite has its center of masg at point
G. Its radii of gyration about the z', x', y’ axes are
k,; =300 mm, k, =k, = 500 mm, respectively. At the
instant shown, the satellite rotates about the x’, y’, and z’
axes with the angular velocity shown, and its center of mass
G has a velocity of vg = {—250i + 200j + 120k} m/s.
Determine the angular momentum of the satellite about
point A at this instant.

*21-32. 'The 200-kg satellite has its center of mass at point G.
Its radii of gyration about the z', x', y" axes are k,, = 300 mm,
k¢ = k, = 500 mm, respectively. At the instant shown, the
satellite rotates about the x’, y’, and z’ axes with the angular
velocity shown, and its center of mass G has a velocity of
vg = {—250i + 200j + 120k} m/s. Determine the kinetic

energy of the satellite at this instant.
77
w, = 1250 rad/,

<.

W, = 60(5/rad/sT
800 mm

&\ —

> =
,’ =300 rad/s
\ ’

Probs. 21-31/32
y
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©21-33. The 25-1b thin plate is suspended from a ball-and-
socket joint at O. A 0.2-1b projectile is fired with a velocity
of v = {-300i — 250j + 300k} ft/s into the plate and
becomes embedded in the plate at point A. Determine the
angular velocity of the plate just after impact and the axis
about which it begins to rotate. Neglect the mass of the
projectile after it embeds into the plate.

21-34. Solve Prob. 21-33 if the projectile emerges from
the plate with a velocity of 275 ft/s in the same direction.

Probs. 21-33/34

21-35. A thin plate, having a mass of 4 kg, is suspended
from one of its corners by a ball-and-socket joint O. If a
stone strikes the plate perpendicular to its surface at an
adjacent corner A with an impulse of Iy = {—60i} N-s,
determine the instantaneous axis of rotation for the plate
and the impulse created at O.

Z

200 mm
{—60i} N-s
200 mm
Prob. 21-35



*21-36. The 15-1b plate is subjected to a force F = 8 Ib
which is always directed perpendicular to the face of the
plate. If the plate is originally at rest, determine its angular
velocity after it has rotated one revolution (360°). The plate
is supported by ball-and-socket joints at A and B.

Prob. 21-36

¢21-37. The plate has a mass of 10 kg and is suspended
from parallel cords. If the plate has an angular velocity of
1.5 rad/s about the z axis at the instant shown, determine
how high the center of the plate rises at the instant the plate
momentarily stops swinging.

Prob. 21-37
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21-38. The satellite has a mass of 200 kg and radii of
gyration of k, = k, = 400 mm and k, = 250 mm. When it
is not rotating, the two small jets A and B are ignited
simultaneously, and each jet provides an impulse of
I = 1000N-s on the satellite. Determine the satellite’s
angular velocity immediately after the ignition.

Prob. 21-38

21-39. The bent rod has a mass per unit length of 6 kg/m,
and its moments and products of inertia have been
calculated in Prob. 21-9. If shaft AB rotates with a constant
angular velocity of w, = 6 rad/s, determine the angular
momentum of the rod about point O, and the kinetic energy
of the rod.

Prob. 21-39
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Fig. 21-11

*21.4 Equations of Motion

Having become familiar with the techniques used to describe both the
inertial properties and the angular momentum of a body, we can now
write the equations which describe the motion of the body in their most
useful forms.

Equations of Translational Motion. The translational motion
of a body is defined in terms of the acceleration of the body’s mass
center, which is measured from an inertial X, Y, Z reference. The
equation of translational motion for the body can be written in vector
form as

2F = mag (21-18)
or by the three scalar equations
EFx = m(aG)x
2F, = m(ag)y (21-19)
EFZ = m(aG)z

Here, 2F = 2F\i + XF,j + 2F k represents the sum of all the
external forces acting on the body.

Equations of Rotational Motion. In Sec. 15.6, we developed
Eq. 15-17, namely,

M, = Hp (21-20)
which states that the sum of the moments of all the external forces acting
on a system of particles (contained in a rigid body) about a fixed point O
is equal to the time rate of change of the total angular momentum of the
body about point O. When moments of the external forces acting on the
particles are summed about the system’s mass center G, one again
obtains the same simple form of Eq. 21-20, relating the moment
summation XMg to the angular momentum Hg. To show this, consider
the system of particles in Fig. 21-11, where X, Y, Z represents an inertial
frame of reference and the x, y, z axes, with origin at G, translate with
respect to this frame. In general, G is accelerating, so by definition the
translating frame is not an inertial reference. The angular momentum of
the ith particle with respect to this frame is, however,

(Hj)g = 1y X m;viyg

where r;; and v;/; represent the position and velocity of the ith particle
with respect to G.Taking the time derivative we have

(Hi) = ¥y X mivyg + Xy X myvyg



By definition, v;; = ;. Thus, the first term on the right side is zero
since the cross product of the same vectors is zero. Also, a;,; = Vj/, so that

(H))g = (ryc X m;a;c)

Similar expressions can be written for the other particles of the body.
When the results are summed, we get

H; = S(r6 X mayg)

Here H is the time rate of change of the total angular momentum of the
body computed about point G.

The relative acceleration for the ith particle is defined by the equation
a;; = a; — ag, where a; and a represent, respectively, the accelerations
of the ith particle and point G measured with respect to the inertial
frame of reference. Substituting and expanding, using the distributive
property of the vector cross product, yields

Hg = 2(rjc X m;a;) — (Emyryg) X ag

By definition of the mass center, the sum (Zm;¥r; ;) = (Zm;)r is equal
to zero, since the position vector ¥ relative to G is zero. Hence, the last
term in the above equation is zero. Using the equation of motion, the
product m;a; can be replaced by the resultant external force F; acting on
the ith particle. Denoting Mg = X(r; X F;), the final result can be
written as

SMg = Hg (21-21)

The rotational equation of motion for the body will now be developed
from either Eq. 21-20 or 21-21. In this regard, the scalar components of
the angular momentum H, or Hs; are defined by Egs. 21-10 or, if
principal axes of inertia are used either at point O or G, by Eqgs. 21-11. If
these components are computed about x, y, z axes that are rotating with
an angular velocity ) that is different from the body’s angular velocity
, then the time derivative H = dH/dt, as used in Egs. 21-20 and 21-21,
must account for the rotation of the x, y, z axes as measured from the
inertial X, Y, Z axes. This requires application of Eq. 20-6, in which case
Egs. 21-20 and 21-21 become

EMO = (I;Io)xyz + Q X HO
(21-22)
EMG = (HG)xyz + Q X HG

Here (H),,, is the time rate of change of H measured from the x, y, z
reference.

There are three ways in which one can define the motion of the x, y, z
axes. Obviously, motion of this reference should be chosen so that it will
yield the simplest set of moment equations for the solution of a
particular problem.

21.4 EQUATIONS OF MOTION
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X, Y, z Axes Having Motion () = 0. If the body has general
motion, the x, y, z axes can be chosen with origin at G, such that the axes
only translate relative to the inertial X, Y, Z frame of reference. Doing
this simplifies Eq. 21-22, since 3 = 0. However, the body may have a
rotation @ about these axes, and therefore the moments and products of
inertia of the body would have to be expressed as functions of time. In
most cases this would be a difficult task, so that such a choice of axes has
restricted application.

X, ¥, z Axes Having Motion ) = w. The x, y, z axes can be
chosen such that they are fixed in and move with the body. The moments
and products of inertia of the body relative to these axes will then be
constant during the motion. Since ) = w, Egs.21-22 become

SMy = (Hp)y,, + @ X H
o o ? (21-23)
EMG = (Hc)xyz + w X HG

We can express each of these vector equations as three scalar equations
using Eqs. 21-10. Neglecting the subscripts O and G yields

M, = Il ,0, - (Iyy - ]zz)wywz - ]xy(d)y - wz‘”x)
- yz(wi - w%) - sz(d’z + wxwy)
2“]\/[y = Iyyd)y - (]zz - ]xx)wzwx - ]yz(d)z - wxwy)

) ) . (21—24)
- zx(wz - wx) - Ixy(wx + wywz)

M, = Izz‘bz - (Ixx - Iyy)wxwy - ]zx((bx - wy‘”z)

- Ixy(wi —w)) - 1

y yz(‘:"y + wzwx)

If the x, y, z axes are chosen as principal axes of inertia, the products of
inertia are zero, I, = I, etc., and the above equations become

M, = Lo, — (I, — I) w0,
M, = Lo, — (I, — I,)o,0, (21-25)
M, = Lo, — (I, — )00,

This set of equations is known historically as the Euler equations of
motion, named after the Swiss mathematician Leonhard Euler, who first
developed them. They apply only for moments summed about either
point O or G.



When applying these equations it should be realized that w,, ,, @,
represent the time derivatives of the magnitudes of the x, y, z
components of @ as observed from x, y, z. To determine these
components, it is first necessary to find w,, o, o, when the x, y, z axes
are oriented in a general position and then take the time derivative of the
magnitude of these components, i.e., (@),,,. However, since the x, y, z
axes are rotating at () = w, then from Eq. 20-6, it should be noted that
® = (@), + o X o Since X w=0, then ® = (®),,,. This
important result indicates that the time derivative of w with respect
to the fixed X)Y,Z axes, that is @, can also be used to obtain
(@),y;. Generally this is the easiest way to determine the result. See
Example 21.5.

X, . z Axes Having Motion () # w. To simplify the
calculations for the time derivative of w, it is often convenient to choose
the x, y, z axes having an angular velocity ) which is different from the
angular velocity w of the body. This is particularly suitable for the
analysis of spinning tops and gyroscopes which are symmetrical about
their spinning axes.* When this is the case, the moments and products of
inertia remain constant about the axis of spin.

Equations 21-22 are applicable for such a set of axes. Each of these
two vector equations can be reduced to a set of three scalar equations
which are derived in a manner similar to Egs. 21-25,1 i.e.,

M, = Lo, — [,Q.0, + [Qo,
M, = Lo, — [,Qw0, + [Q0, (21-26)

M, = Lo, - [Q0, + [[Q,0,

Here Q,, Q,, O, represent the x, y, z components of (), measured from
the inertial frame of reference, and w,, »,, ®, must be determined
relative to the x, y, z axes that have the rotation €. See Example 21.6.
Any one of these sets of moment equations, Eqgs. 21-24, 21-25, or
21-26, represents a series of three first-order nonlinear differential
equations. These equations are “coupled,” since the angular-velocity
components are present in all the terms. Success in determining the
solution for a particular problem therefore depends upon what is
unknown in these equations. Difficulty certainly arises when one
attempts to solve for the unknown components of @ when the external
moments are functions of time. Further complications can arise if the
moment equations are coupled to the three scalar equations of
translational motion, Eqs. 21-19. This can happen because of the
existence of kinematic constraints which relate the rotation of the body
to the translation of its mass center, as in the case of a hoop which rolls

*A detailed discussion of such devices is given in Sec. 21.5.
1See Prob. 21-42.
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without slipping. Problems that require the simultaneous solution of
differential equations are generally solved using numerical methods with
the aid of a computer. In many engineering problems, however, we are
given information about the motion of the body and are required to
determine the applied moments acting on the body. Most of these
problems have direct solutions, so that there is no need to resort to
computer techniques.

Procedure for Analysis

Problems involving the three-dimensional motion of a rigid body
can be solved using the following procedure.

Free-Body Diagram.

e Draw a free-body diagram of the body at the instant considered
and specify the x, y, z coordinate system. The origin of this
reference must be located either at the body’s mass center G, or
at point O, considered fixed in an inertial reference frame and
located either in the body or on a massless extension of the body.

e Unknown reactive force components can be shown having a
positive sense of direction.

e Depending on the nature of the problem, decide what type of
rotational motion ) the x, y, z coordinate system should have,
ie, 3 =0, Q = w, or O # w. When choosing, keep in mind
that the moment equations are simplified when the axes move in
such a manner that they represent principal axes of inertia for the
body at all times.

e Compute the necessary moments and products of inertia for the
body relative to the x, y, z axes.

Kinematics.

e Determine the x, y, z components of the body’s angular velocity
and find the time derivatives of w.

e Note that if = o, then @ = (®),,,. Therefore we can either
find the time derivative of @ with respect to the X, Y, Z axes, @,
and then determine its components w,, »,, ., or we can find the
components of w along the x, y, z axes, when the axes are
oriented in a general position, and then take the time derivative
of the magnitudes of these components, (@),y,.

Equations of Motion.

e Apply either the two vector equations 21-18 and 21-22 or the six
scalar component equations appropriate for the x, y, z coordinate
axes chosen for the problem.
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EXAMPLE |21.4

The gear shown in Fig. 21-12a has a mass of 10 kg and is mounted at
an angle of 10° with the rotating shaft having negligible mass. If
I, =01kg-m?% I, = I, = 0.05kg" m?, and the shaft is rotating with a
constant angular velocity of @ = 30 rad/s, determine the components
of reaction that the thrust bearing A and journal bearing B exert on the
shaft at the instant shown.
SOLUTION
Free-Body Diagram. Fig. 21-12b. The origin of the x, y, z
coordinate system is located at the gear’s center of mass G, which is
also a fixed point. The axes are fixed in and rotate with the gear so
that these axes will then always represent the principal axes of inertia
for the gear. Hence ) = w.
Kinematics. As shown in Fig. 21-12¢, the angular velocity w of the
gear is constant in magnitude and is always directed along the axis of
the shaft AB. Since this vector is measured from the X, Y, Z inertial
frame of reference, for any position of the x, y, z axes,

w, =0 o, = —30sin 10° w, = 30 cos 10°

These components remain constant for any general orientation of
the x, y, z axes,and s0 o, = w, = @, = 0. Also note that since ) = o,
then @ = (w),,,. Therefore, we can find these time derivatives
relative to the X, Y, Z axes. In this regard w has a constant magnitude
and direction (+Z) since @ =0, and so o, = o, = o, = 0.
Furthermore, since G is a fixed point, (ag), = (ag), = (ag), = 0.

Equations of Motion. Applying Egs.21-25 (Q = ) yields
M, = Lo, — (I, — I)ow,
—(Ay)(0.2) + (By)(0.25) = 0 — (0.05 — 0.1)(=30 sin 10°)(30 cos 10°)
—0.2Ay + 0.25By = =7.70 (1)
M, = Lo, — (I, — I,)w,w0,
Ax(0.2) cos 10° — Bx(0.25) cos 10° =0 — 0
Ay = 1.25By 2)
M, = Lo, — (I, — I))ow,
Ax(0.2) sin 10° — Bx(0.25)sin10° =0 — 0
Ax = 1.25By (check)
Applying Egs. 21-19, we have

Fig. 21-12

2Fx = m(ag)x; Ay + By =0 (3)
SE = m(ag)y: Ay + By — 981 =0 (4)
EFZ = m(aG)Z; AZ =0 Ans.

Solving Egs. 1 through Eqgs. 4 simultaneously gives
Ay =By =0 Ay = T71.6N By =265N  Ans.
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EXAMPLE |21.5

The airplane shown in Fig. 21-13a is in the process of making a
steady horizontal turn at the rate of w,. During this motion, the
propeller is spinning at the rate of w,. If the propeller has two
blades, determine the moments which the propeller shaft exerts on
the propeller at the instant the blades are in the vertical position.
For simplicity, assume the blades to be a uniform slender bar having
a moment of inertia / about an axis perpendicular to the blades
passing through the center of the bar, and having zero moment of
inertia about a longitudinal axis.

SOLUTION

Free-Body Diagram. Fig. 21-13b. The reactions of the connecting
shaft on the propeller are indicated by the resultants Fz and M. (The
propeller’s weight is assumed to be negligible.) The x, y, z axes will be
taken fixed to the propeller, since these axes always represent the
principal axes of inertia for the propeller. Thus, {} = w.The moments
of inertia I, and I, are equal (/, = I, = I) and I, = 0.

Kinematics. The angular velocity of the propeller observed from
Z,7,z the X, Y, Z axes, coincident with the x, y, z axes, Fig. 21-13c, is
®w = 0, + o, = o,i + o,k so that the x, y, z components of w are

@) W, = W w, =0 0, = w,
Yo é)k Since () = w, then ® = (w),,,. To find @, which is the time
’ w, derivative with respect to the fixed X, Y, Z axes, we can use Eq. 20-6

since w changes direction relative to X, Y, Z. The time rate of change of
each of these components @ = w, + ®, relative to the X, Y, Z axes can
(c) Y,y,y be obtained by introducing a third coordinate system x’, y’, z’, which
has an angular velocity ' = @, and is coincident with the X, Y, Z axes
Fig. 21-13 at the instant shown. Thus
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@ = (®)yys + 0, % o

= (‘bs)x’y’z’ + (tbp)x/yrzr + w, X (o, + wp)
=0+ 0+tw, X0+ 0w, X o,
=0+0+ o0k Xait+ 0= 0,0

Since the X, Y, Z axes are coincident with the x, y, z axes at the instant
shown, the components of @ along x, y, z are therefore

o, =0 0, = 0,0 w, =0

These same results can also be determined by direct calculation of
(@),y.; however, this will involve a bit more work. To do this, it will be
necessary to view the propeller (or the x, y, z axes) in some general
position such as shown in Fig. 21-13d. Here the plane has turned
through an angle ¢ (phi) and the propeller has turned through an
angle y (psi) relative to the plane. Notice that w, is always directed @
along the fixed Z axis and w, follows the x axis. Thus the general

components of w are

W, = 0, = w,sin Y W, = W, CoSs ¢

Since w, and w), are constant, the time derivatives of these components
become

w, =0 cby=wpcos¢¢ wz=—wpsin¢¢
But ¢ = ¢ = 0° and ¢ = w, at the instant considered. Thus,

W, = wy w, =0 0, = w,
w, =0 0y = 0,0 w, =0
which are the same results as those obtained previously.

Equations of Motion. Using Egs.21-25, we have

M, = Lo, — (I, — I)ow, = 1(0) — (I — 0)(0)w,

M,=0 Ans.
M, = Io, - (I, - IHo,w, = I(a)pws) - (0 — I)wpws
M, = 2w, Ans.

M, = Izd’z - (Ix - Iy)wxwy = O(O) - - I)ws(())
M,=0 Ans.
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EXAMPLE |21.6

The 10-kg flywheel (or thin disk) shown in Fig. 21-14a rotates (spins)
about the shaft at a constant angular velocity of w; = 6 rad/s. At the
same time, the shaft rotates (precessing) about the bearing at A with
an angular velocity of w, = 3 rad/s. If A is a thrust bearing and B is a
journal bearing, determine the components of force reaction at each
of these supports due to the motion.

SOLUTION |

Free-Body Diagram. Fig. 21-14b. The origin of the x, y, z coordinate
system is located at the center of mass G of the flywheel. Here we will let
these coordinates have an angular velocity of & = w, = {3k} rad/s.
Although the wheel spins relative to these axes, the moments of inertia
remain constant,* 1.e.,

I, = I, = (10kg)(02 m)? = 0.1 kg-m?
I, = 3(10 kg)(0.2 m)* = 02 kg m?

Kinematics. From the coincident inertial X, Y, Z frame of
reference, Fig. 21-14c¢, the flywheel has an angular velocity of
o = {6j + 3k} rad/s, so that

10(9.81) N

(b)
w, =0 w,=6rad/s w,=3rad/s
Fig. 21-14 ’ s o /

The time derivative of w must be determined relative to the x, y, z
axes. In this case both w, and w, do not change their magnitude or
direction, and so

Equations of Motion. Applying Egs.21-26 (Q # o) yields

EAlx = Ix(:"x - Iszwy + Iz‘Qywz
—A,(0.5) + B,(0.5) = 0 — (02)(3)(6) + 0 = —3.6

M, = Lo, - [Q0, + [Q o,
0=0-0+0
M, = Lo, - [Qo, + [[Qw,

A,(0.5) — B,(05)=0—0+0

* This would not be true for the propeller in Example 21.5.
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Applying Eqgs. 21-19, we have

SFy = m(ag)x; A, + B, =0
SFy = m(ag)y; A, = —10(0.5)(3)*
SF; = m(ag)z; A, + B, —10(9.81) =0

Solving these equations, we obtain

A, =0 A, =-450N A, =526N Ans.

B, =0 B, = 454N Ans.

NOTE: If the precession @, had not occurred, the z component of
force at A and B would be equal to 49.05 N. In this case, however, the
difference in these components is caused by the “gyroscopic moment”
created whenever a spinning body precesses about another axis. We
will study this effect in detail in the next section.

SOLUTION I
This example can also be solved using Euler’s equations of motion, w, = 3rad/s
Egs. 21-25. In this case @ = @ = {6j + 3k} rad/s, and the time
derivative (@), can be conveniently obtained with reference to the
fixed X, Y, Z axes since @ = (@),,,. This calculation can be
performed by choosing x’, y’, z' axes to have an angular velocity of X, x,x'
V' = w,, Fig. 21-14c, so that

® = (@) + @, X o =0+3k X (6 +3k) = {~18i} rad/s’

w, = —18rad/s w,=0 w,=0
w, = 6rad/s

The moment equations then become Y,y,y ©
M, = Lo, — (I, — I)o,w,
—A,(0.5) + B,(0.5) = 0.1(—=18) — (0.2 — 0.1)(6)(3) = —3.6
M, = Lo, — (I, — I,)w,0,
0=0-0
M, = Lo, — (I, — I))ow,
A,(0.5) = B,(05)=0-0

Fig. 21-14

The solution then proceeds as before.
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“Teropiems

*21-40. Derive the scalar form of the rotational equation
of motion about the x axis if ) # @ and the moments and
products of inertia of the body are not constant with respect
to time.

©21-41. Derive the scalar form of the rotational
equation of motion about the x axis if @ # w and the
moments and products of inertia of the body are constant
with respect to time.

21-42. Derive the Euler equations of motion for Q # @,
ie., Egs. 21-26.

21-43. The uniform rectangular plate has a mass of
m = 2 kg and is given a rotation of w = 4 rad/s about its
bearings at A and B. If a = 0.2 m and ¢ = 0.3 m, determine
the vertical reactions at A and B at the instant the plate
is vertical as shown. Use the x, y, z axes shown and note that

I _(mac)(c2 - a2)
w 12 A+ at)

X

Prob. 21-43

*21-44. The disk, having a mass of 3 kg, is mounted
eccentrically on shaft AB. If the shaft is rotating at a constant
rate of 9 rad/s, determine the reactions at the journal bearing
supports when the disk is in the position shown.

Im

1.25m

® =9rad/s

50 mm ( )
75mm S B

Prob. 21-44

¢21-45. The slender rod AB has a mass m and it is
connected to the bracket by a smooth pin at A. The bracket
is rigidly attached to the shaft. Determine the required
constant angular velocity of @ of the shaft, in order for the
rod to make an angle of 6 with the vertical.

Prob. 21-45

21-46. The 5-kg rod AB is supported by a rotating arm. The
support at A is a journal bearing, which develops reactions
normal to the rod. The support at B is a thrust bearing, which
develops reactions both normal to the rod and along the axis
of the rod. Neglecting friction, determine the x, y, z
components of reaction at these supports when the frame
rotates with a constant angular velocity of @ = 10 rad/s.

J IJ ® =10 rad/s

Prob. 21-46



21-47. 'The car travels around the curved road of radius p
such that its mass center has a constant speed v;. Write the
equations of rotational motion with respect to the x, y, z
axes. Assume that the car’s six moments and products of
inertia with respect to these axes are known.

Prob. 21-47

*21-48. The shaft is constructed from a rod which has a
mass per unit length of 2 kg/m. Determine the x, y, z
components of reaction at the bearings A and B if at the
instant shown the shaft spins freely and has an angular
velocity of w = 30 rad/s. What is the angular acceleration of
the shaft at this instant? Bearing A can support a component
of force in the y direction, whereas bearing B cannot.

z

Prob. 21-48

©21-49. Four spheres are connected to shaft AB. If
mc = 1 kg and mg = 2 kg, determine the mass of spheres
D and F and the angles of the rods, 6, and 6, so that the
shaft is dynamically balanced, that is, so that the bearings at
A and B exert only vertical reactions on the shaft as it
rotates. Neglect the mass of the rods.

Prob. 21-49
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21-50. A man stands on a turntable that rotates about a
vertical axis with a constant angular velocity of
w, = 10rad/s. If the wheel that he holds spins with a
constant angular speed of w; = 30rad/s, determine the
magnitude of moment that he must exert on the wheel to
hold it in the position shown. Consider the wheel as a thin
circular hoop (ring) having a mass of 3 kg and a mean radius
of 300 mm.

w, = 10rad/s

Prob. 21-50

21-51. The 50-1b disk spins with a constant angular rate of
w; = 50rad/s about its axle. Simultaneously, the shaft
rotates with a constant angular rate of w, = 10rad/s.
Determine the x, y, z components of the moment developed
in the arm at A at the instant shown. Neglect the weight of
arm AB.

x/&w; =10rad/s
w; = 50rad/s

Prob. 21-51
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*21-52. The man stands on a turntable that rotates about a
vertical axis with a constant angular velocity of w; = 6 rad/s.
If he tilts his head forward at a constant angular velocity of
w, = 1.5 rad/s about point O, determine the magnitude of
the moment that must be resisted by his neck at O at the
instant 6 = 30°. Assume that his head can be considered as
a uniform 10-Ib sphere, having a radius of 4.5 in. and center
of gravity located at G, and point O is on the surface of the
sphere.

45in N w, = 1.5rad/s

Prob. 21-52

¢21-53. The blades of a wind turbine spin about the shaft S
with a constant angular speed of w,, while the frame
precesses about the vertical axis with a constant angular
speed of w,. Determine the x, y, and z components of
moment that the shaft exerts on the blades as a function of
0. Consider each blade as a slender rod of mass m and
length [.

Prob. 21-53

THREE-DIMENSIONAL KINETICS OF A RIGID BoDY

21-54. Rod CD of mass m and length L is rotating with a
constant angular rate of w; about axle AB, while shaft EF
rotates with a constant angular rate of w,. Determine the X,
Y, and Z components of reaction at thrust bearing £ and
journal bearing F at the instant shown. Neglect the mass of
the other members.

Prob. 21-54

21-55. If shaft AB is driven by the motor with an angular
velocity of w; = 50rad/s and angular acceleration of
@; = 20 rad/s? at the instant shown, and the 10-kg wheel
rolls without slipping, determine the frictional force and the
normal reaction on the wheel, and the moment M that must
be supplied by the motor at this instant. Assume that the
wheel is a uniform circular disk.

w; = 50 rad/s
@, =20 rad/s?

Prob. 21-55



*21-56. A stone crusher consists of a large thin disk which
is pin connected to a horizontal axle. If the axle rotates at a
constant rate of 8 rad/s, determine the normal force which
the disk exerts on the stones. Assume that the disk rolls
without slipping and has a mass of 25 kg. Neglect the mass
of the axle.

Prob. 21-56

021-57. The 25-1b disk is fixed to rod BCD, which has
negligible mass. Determine the torque T which must be
applied to the vertical shaft so that the shaft has an angular
acceleration of @ = 6 rad/s%. The shaft is free to turn in its
bearings.

21-58. Solve Prob. 21-57, assuming rod BCD has a weight
per unit length of 2 1b/ft.

i 2ft 1ft—
il N B
.l T
11t
> |
c
el
w

Probs. 21-57/58
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21-59. Ifshaft AB rotates with a constant angular velocity
of w = 50rad/s, determine the X, Y, Z components of
reaction at journal bearing A and thrust bearing B at the
instant shown. The thin plate has a mass of 10 kg. Neglect
the mass of shaft AB.

Prob. 21-59

*21-60. A thin uniform plate having a mass of 0.4 kg spins
with a constant angular velocity w about its diagonal AB. If
the person holding the corner of the plate at B releases his
finger, the plate will fall downward on its side AC.
Determine the necessary couple moment M which if
applied to the plate would prevent this from happening.

Prob. 21-60




614 CHAPTER 21

Z, z

THREE-DIMENSIONAL KINETICS OF A RIGID BoDY

Yy

Precession ¢

(®)

*21.5 Gyroscopic Motion

In this section we will develop the equations defining the motion of a body
(top) which is symmetrical with respect to an axis and rotating about a
fixed point. These equations also apply to the motion of a particularly
interesting device, the gyroscope.

The body’s motion will be analyzed using Euler angles ¢, 6, ¢ (phi,
theta, psi). To illustrate how they define the position of a body, consider
the top shown in Fig. 21-15a. To define its final position, Fig. 21-15d, a
second set of x, y, z axes is fixed in the top. Starting with the X, Y, Z and
X, y, z axes in coincidence, Fig. 21-15a, the final position of the top can be
determined using the following three steps:

1. Rotate the top about the Z (or z) axis through an angle
¢ (0 = ¢ < 27), Fig. 21-15b.

2. Rotate the top about the x axis through an angle 6 (0 = 6 =< 7),
Fig. 21-15c.

3. Rotate the top about the z axis through an angle ¢ (0 = ¢ < 277)
to obtain the final position, Fig. 20-154.

The sequence of these three angles, ¢, 0, then ¢, must be maintained,
since finite rotations are not vectors (see Fig. 20-1). Although this is the
case, the differential rotations d¢, d@, and dis are vectors, and thus the
angular velocity @ of the top can be expressed in terms of the time
derivatives of the Euler angles. The angular-velocity components ¢, 6,
and ¢ are known as the precession, nutation, and spin, respectively.

* Nutation 6

(c)

Fig. 21-15



Their positive directions are shown in Fig. 21-16. It is seen that these
vectors are not all perpendicular to one another; however, w of the top
can still be expressed in terms of these three components.

Since the body (top) is symmetric with respect to the z or spin axis,
there is no need to attach the x, y, z axes to the top since the inertial
properties of the top will remain constant with respect to this frame
during the motion. Therefore Q = @, + »,, Fig. 21-16. Hence, the
angular velocity of the body is

® =i+ ojt+ ok
= 6i + (¢sin0)j + (Hcosb + )k (21-27)
And the angular velocity of the axes is
Q=0Q,i+ Q,j+ Qk
= 6i + (¢ sin0)j + (¢ cos )k (21-28)

Have the x, y, z axes represent principal axes of inertia for the top, and so
the moments of inertia will be represented as I, = I,, = I and I, = I,.
Since ) # o, Egs. 21-26 are used to establish the rotational equations of
motion. Substituting into these equations the respective angular-velocity
components defined by Egs. 21-27 and 21-28, their corresponding time
derivatives, and the moment of inertia components, yields

M, = I(G — ¢?sin 6 cos 0) + Izéb sin 9((1) cos 0 + ¢)
M, = I($sin @ + 246 cos 6) — Iﬁ(d) cos 6 + i) (21-29)

SM, = L( + ¢ cosf — ¢fsin 6)

Each moment summation applies only at the fixed point O or the center
of mass G of the body. Since the equations represent a coupled set of
nonlinear second-order differential equations, in general a closed-form
solution may not be obtained. Instead, the Euler angles ¢, 6, and ¢y may
be obtained graphically as functions of time using numerical analysis and
computer techniques.

A special case, however, does exist for which simplification of Egs. 21-29
is possible. Commonly referred to as steady precession, it occurs when
the nutation angle 6, precession ¢, and spin ¢ all remain constant.
Equations 21-29 then reduce to the form

SM, = —1¢*sin 0 cos 6 + L sin 6( cos 6 + ¢) | (21-30)

SM, =0
SM, =0

21.5 GyroscoriC MOTION
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Equation 21-30 can be further simplified by noting that, from
Eq.21-27, w, = ¢ cos 6 + i, so that

SM, = —I¢?sin 6 cos 0 + IZd) (sin O)w,

or

SM, = ¢sin6(Lw, — I cos 6) (21-31)

It is interesting to note what effects the spin ¢ has on the moment
about the x axis. To show this, consider the spinning rotor in Fig. 21-17.
Here 6 = 90°, in which case Eq. 21-30 reduces to the form

SM, = Loy

or

SM, = 100, (21-32)

X, x

Fig. 21-17

From the figure it can be seen that (), and e, act along their
respective positive axes and therefore are mutually perpendicular.
Instinctively, one would expect the rotor to fall down under the influence
of gravity! However, this is not the case at all, provided the product
I.Q . is correctly chosen to counterbalance the moment XM, = Wrg
of the rotor’s weight about O. This unusual phenomenon of rigid-body
motion is often referred to as the gyroscopic effect.
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Perhaps a more intriguing demonstration of the gyroscopic effect
comes from studying the action of a gyroscope, frequently referred to as
a gyro. A gyro is a rotor which spins at a very high rate about its axis of
symmetry. This rate of spin is considerably greater than its precessional
rate of rotation about the vertical axis. Hence, for all practical purposes,
the angular momentum of the gyro can be assumed directed along its
axis of spin. Thus, for the gyro rotor shown in Fig. 21-18, w, >> (), and ‘
the magnitude of the angular momentum about point O, as determined ¢ M, ¥
from Eqgs. 21-11, reduces to the form Hp = Lw,. Since both the = \,/r

»Z

D
magnitude and direction of Hy are constant as observed from x, y, z, ) Hﬂ’; _G_> — Y
direct application of Eq. 21-22 yields ) 7 Hp
X
M, = O, X Ho (21-33) Fig. 21-18

Using the right-hand rule applied to the cross product, it can be seen
that ), always swings Hy, (or @, ) toward the sense of 2M,. In effect,
the change in direction of the gyro’s angular momentum, dHy, is
equivalent to the angular impulse caused by the gyro’s weight about O,
ie,dHp = XM, dt, Eq.21-20. Also, since Hy = l,w,and ZM,, Q,, and
H, are mutually perpendicular, Eq. 21-33 reduces to Eq. 21-32.

When a gyro is mounted in gimbal rings, Fig. 21-19, it becomes free of
external moments applied to its base. Thus, in theory, its angular
momentum H will never precess but, instead, maintain its same fixed
orientation along the axis of spin when the base is rotated. This type of
gyroscope is called a free gyro and is useful as a gyrocompass when the
spin axis of the gyro is directed north. In reality, the gimbal mechanism is
never completely free of friction, so such a device is useful only for the
local navigation of ships and aircraft. The gyroscopic effect is also useful
as a means of stabilizing both the rolling motion of ships at sea and the
trajectories of missiles and projectiles. Furthermore, this effect is of
significant importance in the design of shafts and bearings for rotors
which are subjected to forced precessions.

Bearings
Gimbali \ >

The spinning of the gyro within the frame
of this toy gyroscope produces angular
momentum Hp, which is changing
direction as the frame precesses w,
about the vertical axis. The gyroscope
will not fall down since the moment of its
weight W about the support is balanced
Fig. 21-19 by the change in the direction of Hy.
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EXAMPLE |21.7

w, = 100 rad /s The top shown in Fig. 21-20a has a mass of 0.5 kg and is precessing about
the vertical axis at a constant angle of § = 60°. If it spins with an angular
velocity wg = 100 rad/s, determine the precession w,. Assume that
the axial and transverse moments of inertia of the top are
0.45(107%) kg - m? and 1.20(107%) kg - m?, respectively, measured with
respect to the fixed point O.

z
V4
y
G X 60°
Fig. 21-20 490
N o y
005m J Oy
(0
X
X
(b)
SOLUTION

Equation 21-30 will be used for the solution since the motion is steady
precession. As shown on the free-body diagram, Fig. 21-20b, the
coordinate axes are established in the usual manner, that is, with the
positive z axis in the direction of spin, the positive Z axis in the direction
of precession, and the positive x axis in the direction of the moment
2 M, (refer to Fig. 21-16). Thus,

SM, = —I¢?sin 6 cos § + L sin 6(¢p cos 6 + 1)
4.905 N(0.05 m) sin 60° = —[1.20(1073) kg - m? $*] sin 60° cos 60°
+ [0.45(107%) kg - m*]¢b sin 60°(¢p cos 60° + 100 rad/s)

or
d? — 120.0¢ + 654.0 = 0 1)
Solving this quadratic equation for the precession gives
¢ = 114 rad/s (high precession) Ans.
and
¢ = 5.72rad/s (low precession) Ans.

NOTE: In reality, low precession of the top would generally be
observed, since high precession would require a larger kinetic energy.
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EXAMPLE |21.8

The 1-kg disk shown in Fig. 21-21a spins about its axis with a constant
angular velocity wp = 70 rad/s. The block at B has a mass of 2 kg, and
by adjusting its position s one can change the precession of the disk
about its supporting pivot at O while the shaft remains horizontal.
Determine the position s that will enable the disk to have a constant
precession w, = 0.5 rad/s about the pivot. Neglect the weight of the
shaft.

981N (b

SOLUTION

The free-body diagram of the assembly is shown in Fig. 21-21b. The
origin for both the x, y, z and X, Y, Z coordinate systems is located at
the fixed point O. In the conventional sense, the Z axis is chosen along
the axis of precession, and the z axis is along the axis of spin, so that
6 = 90°. Since the precession is steady, Eq. 21-32 can be used for the
solution.

M, = IO,

Substituting the required data gives
(98.1N) (0.2 m) — (19.62 N)s = [5(1 kg)(0.05 m)2]0.5 rad/s(—70 rad/s)
s = 0.102m = 102 mm Ans.
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